Tejani Ali S, Ng Yee S, Xi Yin, Fielding Julia R, Browning Travis G, Rayan Jesse C
Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390.
Radiol Artif Intell. 2022 Jun 29;4(4):e220007. doi: 10.1148/ryai.220007. eCollection 2022 Jul.
To develop and evaluate domain-specific and pretrained bidirectional encoder representations from transformers (BERT) models in a transfer learning task on varying training dataset sizes to annotate a larger overall dataset.
The authors retrospectively reviewed 69 095 anonymized adult chest radiograph reports (reports dated April 2020-March 2021). From the overall cohort, 1004 reports were randomly selected and labeled for the presence or absence of each of the following devices: endotracheal tube (ETT), enterogastric tube (NGT, or Dobhoff tube), central venous catheter (CVC), and Swan-Ganz catheter (SGC). Pretrained transformer models (BERT, PubMedBERT, DistilBERT, RoBERTa, and DeBERTa) were trained, validated, and tested on 60%, 20%, and 20%, respectively, of these reports through fivefold cross-validation. Additional training involved varying dataset sizes with 5%, 10%, 15%, 20%, and 40% of the 1004 reports. The best-performing epochs were used to assess area under the receiver operating characteristic curve (AUC) and determine run time on the overall dataset.
The highest average AUCs from fivefold cross-validation were 0.996 for ETT (RoBERTa), 0.994 for NGT (RoBERTa), 0.991 for CVC (PubMedBERT), and 0.98 for SGC (PubMedBERT). DeBERTa demonstrated the highest AUC for each support device trained on 5% of the training set. PubMedBERT showed a higher AUC with a decreasing training set size compared with BERT. Training and validation time was shortest for DistilBERT at 3 minutes 39 seconds on the annotated cohort.
Pretrained and domain-specific transformer models required small training datasets and short training times to create a highly accurate final model that expedites autonomous annotation of large datasets. Informatics, Named Entity Recognition, Transfer Learning . ©RSNA, 2022See also the commentary by Zech in this issue.
在不同训练数据集大小的迁移学习任务中开发并评估特定领域的预训练变换器双向编码器表征(BERT)模型,以注释更大的整体数据集。
作者回顾性分析了69095份匿名成人胸部X光报告(报告日期为2020年4月至2021年3月)。从整个队列中随机选择1004份报告,并标记以下每种设备的有无:气管内插管(ETT)、鼻胃管(NGT,或多夫管)、中心静脉导管(CVC)和 Swan-Ganz 导管(SGC)。通过五折交叉验证,分别在这些报告的60%、20%和20%上对预训练变换器模型(BERT、PubMedBERT、DistilBERT、RoBERTa 和 DeBERTa)进行训练、验证和测试。额外训练涉及使用1004份报告中的5%、10%、15%、20%和40%来改变数据集大小。使用表现最佳的轮次来评估受试者操作特征曲线下面积(AUC),并确定在整个数据集上的运行时间。
五折交叉验证的最高平均AUC分别为:ETT为0.996(RoBERTa)、NGT为0.994(RoBERTa)、CVC为0.991(PubMedBERT)、SGC为0.98(PubMedBERT)。对于在5%训练集上训练的每种支持设备,DeBERTa的AUC最高。与BERT相比,PubMedBERT在训练集大小减少时显示出更高的AUC。在注释队列上,DistilBERT的训练和验证时间最短,为3分39秒。
预训练的特定领域变换器模型需要小训练数据集和短训练时间来创建高度准确的最终模型,从而加快大型数据集的自动注释。信息学、命名实体识别、迁移学习。©RSNA,2022 另见本期泽赫的评论。