Suppr超能文献

相似文献

1
Integration of genetic and clinical information to improve imputation of data missing from electronic health records.
J Am Med Inform Assoc. 2019 Oct 1;26(10):1056-1063. doi: 10.1093/jamia/ocz041.
3
6
Characterizing and Managing Missing Structured Data in Electronic Health Records: Data Analysis.
JMIR Med Inform. 2018 Feb 23;6(1):e11. doi: 10.2196/medinform.8960.
7
Imputation of missing values for electronic health record laboratory data.
NPJ Digit Med. 2021 Oct 11;4(1):147. doi: 10.1038/s41746-021-00518-0.
8
A novel missing data imputation approach based on clinical conditional Generative Adversarial Networks applied to EHR datasets.
Comput Biol Med. 2023 Sep;163:107188. doi: 10.1016/j.compbiomed.2023.107188. Epub 2023 Jun 22.
10
Chapter 13: Mining electronic health records in the genomics era.
PLoS Comput Biol. 2012;8(12):e1002823. doi: 10.1371/journal.pcbi.1002823. Epub 2012 Dec 27.

引用本文的文献

3
Machine learning approaches for electronic health records phenotyping: a methodical review.
J Am Med Inform Assoc. 2023 Jan 18;30(2):367-381. doi: 10.1093/jamia/ocac216.
5
The relationship of endothelial function and arterial stiffness with subclinical target organ damage in essential hypertension.
J Clin Hypertens (Greenwich). 2022 Apr;24(4):418-429. doi: 10.1111/jch.14447. Epub 2022 Mar 3.
6
A narrative review on the validity of electronic health record-based research in epidemiology.
BMC Med Res Methodol. 2021 Oct 27;21(1):234. doi: 10.1186/s12874-021-01416-5.
7
Importance-aware personalized learning for early risk prediction using static and dynamic health data.
J Am Med Inform Assoc. 2021 Mar 18;28(4):713-726. doi: 10.1093/jamia/ocaa306.
8
Increasing the Density of Laboratory Measures for Machine Learning Applications.
J Clin Med. 2020 Dec 30;10(1):103. doi: 10.3390/jcm10010103.

本文引用的文献

1
Electronic health records: the next wave of complex disease genetics.
Hum Mol Genet. 2018 May 1;27(R1):R14-R21. doi: 10.1093/hmg/ddy081.
2
Characterizing and Managing Missing Structured Data in Electronic Health Records: Data Analysis.
JMIR Med Inform. 2018 Feb 23;6(1):e11. doi: 10.2196/medinform.8960.
3
Prospects for using risk scores in polygenic medicine.
Genome Med. 2017 Nov 13;9(1):96. doi: 10.1186/s13073-017-0489-y.
4
10 Years of GWAS Discovery: Biology, Function, and Translation.
Am J Hum Genet. 2017 Jul 6;101(1):5-22. doi: 10.1016/j.ajhg.2017.06.005.
6
MISSING DATA IMPUTATION IN THE ELECTRONIC HEALTH RECORD USING DEEPLY LEARNED AUTOENCODERS.
Pac Symp Biocomput. 2017;22:207-218. doi: 10.1142/9789813207813_0021.
7
Polygenic score prediction captures nearly all common genetic risk for Alzheimer's disease.
Neurobiol Aging. 2017 Jan;49:214.e7-214.e11. doi: 10.1016/j.neurobiolaging.2016.07.018. Epub 2016 Aug 5.
8
Contrasting the Genetic Architecture of 30 Complex Traits from Summary Association Data.
Am J Hum Genet. 2016 Jul 7;99(1):139-53. doi: 10.1016/j.ajhg.2016.05.013. Epub 2016 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验