Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
Institut de Biologie et de Technologies de Saclay, CNRS UMR 8221, Commissariat à l'Énergie Atomique (CEA) Saclay, 91191 Gif-sur-Yvette, France.
Science. 2014 Aug 15;345(6198):804-8. doi: 10.1126/science.1254910. Epub 2014 Aug 14.
The photosynthetic protein complex photosystem II oxidizes water to molecular oxygen at an embedded tetramanganese-calcium cluster. Resolving the geometric and electronic structure of this cluster in its highest metastable catalytic state (designated S3) is a prerequisite for understanding the mechanism of O-O bond formation. Here, multifrequency, multidimensional magnetic resonance spectroscopy reveals that all four manganese ions of the catalyst are structurally and electronically similar immediately before the final oxygen evolution step; they all exhibit a 4+ formal oxidation state and octahedral local geometry. Only one structural model derived from quantum chemical modeling is consistent with all magnetic resonance data; its formation requires the binding of an additional water molecule. O-O bond formation would then proceed by the coupling of two proximal manganese-bound oxygens in the transition state of the cofactor.
光合作用蛋白复合物光系统 II 在嵌入式四锰-钙簇中将水氧化为氧气。解析该簇在其最高亚稳催化态(指定为 S3)中的几何和电子结构是理解 O-O 键形成机制的前提。在这里,多频、多维磁共振波谱揭示,在最终的氧气释放步骤之前,催化剂的所有四个锰离子在结构和电子上都是相似的;它们都表现出 4+ 的形式氧化态和八面体的局部几何形状。只有一个源自量子化学建模的结构模型与所有磁共振数据一致;其形成需要结合一个额外的水分子。然后,O-O 键的形成将通过辅因子过渡态中两个邻近锰结合氧的耦合来进行。