School of Electronic Engineering and Computer Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom.
J Phys Chem B. 2013 Dec 27;117(51):16486-92. doi: 10.1021/jp407580y. Epub 2013 Dec 13.
Solvation dynamics of biomolecules and water in a hydration shell have been studied by different methods; however, a clear picture of this process is not yet established. Terahertz (THz) studies of molecular behavior in binary solutions present unique information on the picosecond motions of molecules. A complete mechanical interpretation of THz absorption spectra associated with solvated biomolecules remains a challenging task. The Gromacs molecular dynamics (MD) simulation package is used here to examine the spectral characteristics of water molecules in close proximity to biomolecules using vibrational density of states (VDOS). Systematic simulation of solvation dynamics of proteins of different size and tertiary structure are presented. The following have been selected for analysis. They range from less to more complex tertiary structure (corresponding to an increased number of secondary structure elements): TRP-cage13-20 peptide, TRP-cage, BPTI, and lysozyme. The initial study predicts that the depth of the hydration shell, determined by VDOS of water, extends to approximately 10 Å and does not depend on protein size. Furthermore the integral perturbation coefficient of the whole solvation layer is found to be increased for larger proteins due to a higher retardation rate of water molecules in their shells. Differences in solvation dynamics among the proteins considered originate primarily from the water molecules buried in the interior of the protein and not from the on-surface molecules.
生物分子和水在水合壳中的溶剂化动力学已经通过不同的方法进行了研究;然而,这个过程的清晰画面尚未建立。太赫兹(THz)研究二元溶液中分子的行为提供了关于分子皮秒运动的独特信息。与被溶剂化的生物分子相关的太赫兹吸收光谱的完全力学解释仍然是一项具有挑战性的任务。本文使用 Gromacs 分子动力学(MD)模拟包,使用振动态密度(VDOS)研究与生物分子紧密结合的水分子的光谱特征。对不同大小和三级结构的蛋白质的溶剂化动力学进行了系统的模拟。选择以下蛋白质进行分析:从小到大三级结构(对应于更多的二级结构元件):TRP-cage13-20 肽、TRP-cage、BPTI 和溶菌酶。最初的研究预测,由水的 VDOS 确定的水合壳的深度延伸到大约 10 Å,并且不依赖于蛋白质的大小。此外,由于水在其壳中的延迟率更高,整个溶剂化层的整体扰动系数发现对于较大的蛋白质而增加。所考虑的蛋白质之间的溶剂化动力学的差异主要源于埋藏在蛋白质内部的水分子,而不是表面上的水分子。