Nordbø Oyvind, Lamata Pablo, Land Sander, Niederer Steven, Aronsen Jan M, Louch William E, Sjaastad Ivar, Martens Harald, Gjuvsland Arne B, Tøndel Kristin, Torp Hans, Lohezic Maelene, Schneider Jurgen E, Remme Espen W, Smith Nicolas, Omholt Stig W, Vik Jon Olav
Department of Mathematical Sciences and Technology, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK.
Comput Biol Med. 2014 Oct;53:65-75. doi: 10.1016/j.compbiomed.2014.07.013. Epub 2014 Aug 2.
The mouse is an important model for theoretical-experimental cardiac research, and biophysically based whole organ models of the mouse heart are now within reach. However, the passive material properties of mouse myocardium have not been much studied. We present an experimental setup and associated computational pipeline to quantify these stiffness properties. A mouse heart was excised and the left ventricle experimentally inflated from 0 to 1.44kPa in eleven steps, and the resulting deformation was estimated by echocardiography and speckle tracking. An in silico counterpart to this experiment was built using finite element methods and data on ventricular tissue microstructure from diffusion tensor MRI. This model assumed a hyperelastic, transversely isotropic material law to describe the force-deformation relationship, and was simulated for many parameter scenarios, covering the relevant range of parameter space. To identify well-fitting parameter scenarios, we compared experimental and simulated outcomes across the whole range of pressures, based partly on gross phenotypes (volume, elastic energy, and short- and long-axis diameter), and partly on node positions in the geometrical mesh. This identified a narrow region of experimentally compatible values of the material parameters. Estimation turned out to be more precise when based on changes in gross phenotypes, compared to the prevailing practice of using displacements of the material points. We conclude that the presented experimental setup and computational pipeline is a viable method that deserves wider application.
小鼠是理论-实验性心脏研究的重要模型,基于生物物理的小鼠心脏全器官模型现已触手可及。然而,小鼠心肌的被动材料特性尚未得到充分研究。我们提出了一种实验装置及相关的计算流程来量化这些刚度特性。切除一只小鼠的心脏,将左心室以十一步从0膨胀至1.44kPa,并通过超声心动图和斑点追踪估计由此产生的变形。利用有限元方法和扩散张量磁共振成像获得的心室组织微观结构数据构建了该实验的计算机模拟模型。该模型采用超弹性、横观各向同性材料定律来描述力-变形关系,并针对许多参数场景进行了模拟,涵盖了参数空间的相关范围。为了确定拟合良好的参数场景,我们在整个压力范围内比较了实验和模拟结果,部分基于总体表型(体积、弹性能以及短轴和长轴直径),部分基于几何网格中的节点位置。这确定了材料参数在实验上兼容的一个狭窄区域。与使用材料点位移的主流做法相比,基于总体表型变化进行估计结果更为精确。我们得出结论,所提出的实验装置和计算流程是一种可行的方法,值得更广泛地应用。