Xue Zhihong, Ye Qiaohong, Anson Simon R, Yang Jichen, Xiao Guanghua, Kowbel David, Glass N Louise, Crosthwaite Susan K, Liu Yi
Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.
Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
Nature. 2014 Oct 30;514(7524):650-3. doi: 10.1038/nature13671. Epub 2014 Aug 17.
Eukaryotic circadian oscillators consist of negative feedback loops that generate endogenous rhythmicities. Natural antisense RNAs are found in a wide range of eukaryotic organisms. Nevertheless, the physiological importance and mode of action of most antisense RNAs are not clear. frequency (frq) encodes a component of the Neurospora core circadian negative feedback loop, which was thought to generate sustained rhythmicity. Transcription of qrf, the long non-coding frq antisense RNA, is induced by light, and its level oscillates in antiphase to frq sense RNA. Here we show that qrf transcription is regulated by both light-dependent and light-independent mechanisms. Light-dependent qrf transcription represses frq expression and regulates clock resetting. Light-independent qrf expression, on the other hand, is required for circadian rhythmicity. frq transcription also inhibits qrf expression and drives the antiphasic rhythm of qrf transcripts. The mutual inhibition of frq and qrf transcription thus forms a double negative feedback loop that is interlocked with the core feedback loop. Genetic and mathematical modelling analyses indicate that such an arrangement is required for robust and sustained circadian rhythmicity. Moreover, our results suggest that antisense transcription inhibits sense expression by mediating chromatin modifications and premature termination of transcription. Taken together, our results establish antisense transcription as an essential feature in a circadian system and shed light on the importance and mechanism of antisense action.
真核生物钟振荡器由产生内源性节律的负反馈环组成。天然反义RNA存在于广泛的真核生物中。然而,大多数反义RNA的生理重要性和作用模式尚不清楚。频率(frq)编码粗糙脉孢菌核心生物钟负反馈环的一个组成部分,该负反馈环被认为能产生持续的节律性。长链非编码frq反义RNA即qrf的转录受光诱导,其水平与frq有义RNA呈反相振荡。在此我们表明,qrf转录受光依赖和光非依赖机制的调控。光依赖的qrf转录抑制frq表达并调节生物钟重置。另一方面,光非依赖的qrf表达是生物钟节律性所必需的。frq转录也抑制qrf表达并驱动qrf转录本的反相节律。因此,frq和qrf转录的相互抑制形成了一个与核心反馈环相互连锁的双负反馈环。遗传和数学建模分析表明,这种安排对于稳健和持续的生物钟节律性是必需的。此外,我们的结果表明,反义转录通过介导染色质修饰和转录提前终止来抑制有义表达。综上所述,我们的结果确立了反义转录是生物钟系统的一个基本特征,并揭示了反义作用的重要性和机制。