Nourian Zohreh, Scott Andrew, Danelon Christophe
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
Syst Synth Biol. 2014 Sep;8(3):237-47. doi: 10.1007/s11693-014-9150-x. Epub 2014 Apr 27.
The construction of an irreducible minimal cell having all essential attributes of a living system is one of the biggest challenges facing synthetic biology. One ubiquitous task accomplished by any living systems is the division of the cell envelope. Hence, the assembly of an elementary, albeit sufficient, molecular machinery that supports compartment division, is a crucial step towards the realization of self-reproducing artificial cells. Looking backward to the molecular nature of possible ancestral, supposedly more rudimentary, cell division systems may help to identify a minimal divisome. In light of a possible evolutionary pathway of division mechanisms from simple lipid vesicles toward modern life, we define two approaches for recapitulating division in primitive cells: the membrane deforming protein route and the lipid biosynthesis route. Having identified possible proteins and working mechanisms participating in membrane shape alteration, we then discuss how they could be integrated into the construction framework of a programmable minimal cell relying on gene expression inside liposomes. The protein synthesis using recombinant elements (PURE) system, a reconstituted minimal gene expression system, is conceivably the most versatile synthesis platform. As a first step towards the de novo synthesis of a divisome, we showed that the N-BAR domain protein produced from its gene could assemble onto the outer surface of liposomes and sculpt the membrane into tubular structures. We finally discuss the remaining challenges for building up a self-reproducing minimal cell, in particular the coupling of the division machinery with volume expansion and genome replication.
构建具有生命系统所有基本属性的不可简化的最小细胞,是合成生物学面临的最大挑战之一。任何生命系统都要完成的一项普遍任务是细胞膜的分裂。因此,组装一个基本的、尽管足够的支持区室分裂的分子机器,是实现自我复制人工细胞的关键一步。回顾可能的祖先细胞分裂系统(据推测更为原始)的分子本质,可能有助于确定最小分裂体。根据从简单脂质囊泡到现代生命的分裂机制可能的进化途径,我们定义了两种在原始细胞中重现分裂的方法:膜变形蛋白途径和脂质生物合成途径。在确定了参与膜形状改变的可能蛋白质和作用机制后,我们接着讨论如何将它们整合到依赖脂质体内基因表达的可编程最小细胞的构建框架中。使用重组元件的蛋白质合成(PURE)系统,一种重构的最小基因表达系统,可以说是最通用的合成平台。作为从头合成分裂体的第一步,我们表明从其基因产生的N-BAR结构域蛋白可以组装到脂质体的外表面,并将膜塑造成管状结构。我们最后讨论了构建自我复制最小细胞仍然面临的挑战,特别是分裂机器与体积扩张和基因组复制的耦合。