Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, The Netherlands.
Nat Commun. 2019 Oct 31;10(1):4969. doi: 10.1038/s41467-019-12932-w.
The Min biochemical network regulates bacterial cell division and is a prototypical example of self-organizing molecular systems. Cell-free assays relying on purified proteins have shown that MinE and MinD self-organize into surface waves and oscillatory patterns. In the context of developing a synthetic cell from elementary biological modules, harnessing Min oscillations might allow us to implement higher-order cellular functions. To convey hereditary information, the Min system must be encoded in a DNA molecule that can be copied, transcribed, and translated. Here, the MinD and MinE proteins are synthesized de novo from their genes inside liposomes. Dynamic protein patterns and accompanying liposome shape deformation are observed. When integrated with the cytoskeletal proteins FtsA and FtsZ, the synthetic Min system is able to dynamically regulate FtsZ patterns. By enabling genetic control over Min protein self-organization and membrane remodeling, our methodology offers unique opportunities towards directed evolution of bacterial division processes in vitro.
Min 生化网络调节细菌细胞分裂,是自组织分子系统的典型范例。依赖于纯化蛋白的无细胞实验表明 MinE 和 MinD 会自我组织成表面波和振荡模式。在从基本生物模块开发合成细胞的背景下,利用 Min 振荡可能使我们能够实现更高阶的细胞功能。为了传递遗传信息,Min 系统必须编码在可以复制、转录和翻译的 DNA 分子中。在这里,MinD 和 MinE 蛋白从头从脂质体内部的基因中合成。观察到动态蛋白质模式和伴随的脂质体形状变形。当与细胞骨架蛋白 FtsA 和 FtsZ 整合时,合成 Min 系统能够动态调节 FtsZ 模式。通过实现对 Min 蛋白自组织和膜重塑的遗传控制,我们的方法为体外定向进化细菌分裂过程提供了独特的机会。