Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg (Germany).
Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10536-40. doi: 10.1002/anie.201404547. Epub 2014 Aug 19.
The catalysis of bioorthogonal transformations inside living organisms is a formidable challenge--yet bears great potential for future applications in chemical biology and medicinal chemistry. We herein disclose highly active organometallic ruthenium complexes for bioorthogonal catalysis under biologically relevant conditions and inside living cells. The catalysts uncage allyl carbamate protected amines with unprecedented high turnover numbers of up to 270 cycles in the presence of water, air, and millimolar concentrations of thiols. By live-cell imaging of HeLa cells and with the aid of a caged fluorescent probe we could reveal a rapid development of intense fluorescence within the cellular cytoplasm and therefore support the proposed bioorthogonality of the catalysts. In addition, to illustrate the manifold applications of bioorthogonal catalysis, we developed a method for catalytic in-cell activation of a caged anticancer drug, which efficiently induced apoptosis in HeLa cells.
在活生物体内部进行生物正交转化的催化是一项艰巨的挑战——但对于化学生物学和药物化学的未来应用具有巨大的潜力。我们在此披露了在生物相关条件下和活细胞内部进行生物正交催化的高活性有机金属钌配合物。在水、空气和毫摩尔浓度的巯基存在下,这些催化剂以高达 270 个循环的空前高转化率使烯丙基碳酸酯保护的胺脱保护。通过对 HeLa 细胞的活细胞成像,并借助被笼蔽的荧光探针,我们可以在细胞质内迅速观察到强烈的荧光,从而支持所提出的催化剂的生物正交性。此外,为了说明生物正交催化的多种应用,我们开发了一种用于笼蔽抗癌药物的催化细胞内激活的方法,该方法可有效诱导 HeLa 细胞凋亡。