Dal Forno Gean M, Latocheski Eloah, Navo Claudio D, Albuquerque Brunno L, St John Albert L, Avenier Frédéric, Jiménez-Osés Gonzalo, Domingos Josiel B
Laboratory of Biomimetic Catalysis (LaCBio), Department of Chemistry, Federal University of Santa Catarina (UFSC) Campus Trindade Florianópolis 88040-900 SC Brazil
Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800, Derio 48160 Spain.
Chem Sci. 2024 Feb 16;15(12):4458-4465. doi: 10.1039/d3sc06408e. eCollection 2024 Mar 20.
The palladium-mediated uncaging reaction of allene substrates remains a promising yet often overlooked strategy in the realm of bioorthogonal chemistry. This method exhibits high kinetic rates, rivaling those of the widely employed allylic and propargylic protecting groups. In this study, we investigate into the mechanistic aspects of the C-O bond-cleavage deallenylation reaction, examining how chloride levels influence the kinetics when triggered by Pd(ii) complexes. Focusing on the deallenylation of 1,2-allenyl protected 4-methylumbelliferone promoted by AllylPdCl, our findings reveal that reaction rates are higher in environments with lower chloride concentrations, mirroring intracellular conditions, compared to elevated chloride concentrations typical of extracellular conditions. Through kinetic and spectroscopic experiments, combined with DFT calculations, we uncover a detailed mechanism that identifies AllylPd(HO) as the predominant active species. These insights provide the basis for the design of π-allylpalladium catalysts suited for selective uncaging within specific cellular environments, potentially enhancing targeted therapeutic applications.
在生物正交化学领域,钯介导的丙二烯底物脱笼反应仍然是一种有前景但常被忽视的策略。该方法具有较高的动力学速率,可与广泛使用的烯丙基和炔丙基保护基团相媲美。在本研究中,我们探究了C-O键断裂脱烯丙基反应的机理,考察了氯离子水平如何在由Pd(ii)配合物引发时影响动力学。以AllylPdCl促进的1,2-烯丙基保护的4-甲基伞形酮的脱烯丙基反应为重点,我们的研究结果表明,与细胞外典型的高氯离子浓度环境相比,在低氯离子浓度的环境中反应速率更高,这与细胞内环境相似。通过动力学和光谱实验,结合密度泛函理论计算,我们揭示了一个详细的机理,确定AllylPd(HO)为主要活性物种。这些见解为设计适用于特定细胞环境中选择性脱笼的π-烯丙基钯催化剂提供了基础,有可能增强靶向治疗应用。