Neuroscience Center, University of Helsinki Helsinki, Finland.
Front Neuroanat. 2014 Aug 5;8:74. doi: 10.3389/fnana.2014.00074. eCollection 2014.
During the last decade, numerous studies have demonstrated that the actin cytoskeleton plays a pivotal role in the control of dendritic spine shape. Synaptic stimulation rapidly changes the actin dynamics and many actin regulators have been shown to play roles in neuron functionality. Accordingly, defects in the regulation of the actin cytoskeleton in neurons have been implicated in memory disorders. Due to the small size of spines, it is difficult to detect changes in the actin structures in dendritic spines by conventional light microscopy imaging. Instead, to know how tightly actin filaments are bundled together, and how fast the filaments turnover, we need to use advanced microscopy techniques, such as fluorescence recovery after photobleaching (FRAP), photoactivatable green fluorescent protein (PAGFP) fluorescence decay and fluorescence anisotropy. Fluorescence anisotropy, which measures the Förster resonance energy transfer (FRET) between two GFP fluorophores, has been proposed as a method to measure the level of actin polymerization. Here, we propose a novel idea that fluorescence anisotropy could be more suitable to study the level of actin filament bundling instead of actin polymerization. We validate the method in U2OS cell line where the actin structures can be clearly distinguished and apply to analyze how actin filament organization in dendritic spines changes during neuronal maturation. In addition to fluorescence anisotropy validation, we take a critical look at the properties and limitations of FRAP and PAGFP fluorescence decay methods and offer our proposals for the analysis methods for these approaches. These three methods complement each other, each providing additional information about actin dynamics and organization in dendritic spines.
在过去的十年中,大量研究表明肌动蛋白细胞骨架在控制树突棘形状方面起着关键作用。突触刺激会迅速改变肌动蛋白动力学,许多肌动蛋白调节剂已被证明在神经元功能中发挥作用。因此,神经元中肌动蛋白细胞骨架调节的缺陷与记忆障碍有关。由于棘突较小,通过传统的光学显微镜成像很难检测到树突棘中肌动蛋白结构的变化。相反,为了了解肌动蛋白丝束捆绑的紧密程度以及丝束的周转率,我们需要使用先进的显微镜技术,如光漂白后荧光恢复(FRAP)、光活化绿色荧光蛋白(PAGFP)荧光衰减和荧光各向异性。荧光各向异性测量两个 GFP 荧光团之间的Förster 共振能量转移(FRET),已被提议作为测量肌动蛋白聚合水平的方法。在这里,我们提出了一个新的想法,即荧光各向异性可能更适合研究肌动蛋白丝束的捆绑程度而不是肌动蛋白聚合。我们在 U2OS 细胞系中验证了该方法,其中可以清楚地区分肌动蛋白结构,并应用于分析神经元成熟过程中树突棘中肌动蛋白丝组织的变化。除了荧光各向异性验证之外,我们还对 FRAP 和 PAGFP 荧光衰减方法的特性和局限性进行了批判性研究,并为这些方法的分析方法提供了建议。这三种方法相互补充,每种方法都提供了有关树突棘中肌动蛋白动力学和组织的附加信息。