Suppr超能文献

在活细胞显微镜检查中规避光损伤。

Circumventing photodamage in live-cell microscopy.

作者信息

Magidson Valentin, Khodjakov Alexey

机构信息

Wadsworth Center, NYS Department of Health, Albany, New York, USA.

出版信息

Methods Cell Biol. 2013;114:545-60. doi: 10.1016/B978-0-12-407761-4.00023-3.

Abstract

Fluorescence microscopy has become an essential tool in cell biology. This technique allows researchers to visualize the dynamics of tissue, cells, individual organelles, and macromolecular assemblies inside the cell. Unfortunately, fluorescence microscopy is not completely "noninvasive" as the high-intensity excitation light required for excitation of fluorophores is inherently toxic for live cells. Physiological changes induced by excessive illumination can lead to artifacts and abnormal responses. In this chapter, we review major factors that contribute to phototoxicity and discuss practical solutions for circumventing photodamage. These solutions include the proper choice of image acquisition parameters, optimization of filter sets, hardware synchronization, and the use of intelligent illumination to avoid unnecessary light exposure.

摘要

荧光显微镜已成为细胞生物学中的一项重要工具。该技术使研究人员能够观察组织、细胞、单个细胞器以及细胞内大分子组装体的动态变化。不幸的是,荧光显微镜并非完全“非侵入性”,因为激发荧光团所需的高强度激发光对活细胞具有内在毒性。过度照明引起的生理变化会导致假象和异常反应。在本章中,我们将综述导致光毒性的主要因素,并讨论规避光损伤的实际解决方案。这些解决方案包括正确选择图像采集参数、优化滤光片组、硬件同步以及使用智能照明以避免不必要的光暴露。

相似文献

1
Circumventing photodamage in live-cell microscopy.
Methods Cell Biol. 2013;114:545-60. doi: 10.1016/B978-0-12-407761-4.00023-3.
2
Fluorescence live cell imaging.
Methods Cell Biol. 2014;123:77-94. doi: 10.1016/B978-0-12-420138-5.00005-7.
3
Wide-Field Multi-Parameter FLIM: long-term minimal invasive observation of proteins in living cells.
PLoS One. 2011 Feb 2;6(2):e15820. doi: 10.1371/journal.pone.0015820.
4
3D fluorescence anisotropy imaging using selective plane illumination microscopy.
Opt Express. 2015 Aug 24;23(17):22308-17. doi: 10.1364/OE.23.022308.
5
Predictive-focus illumination for reducing photodamage in live-cell microscopy.
J Microsc. 2012 May;246(2):160-7. doi: 10.1111/j.1365-2818.2012.03605.x. Epub 2012 Mar 20.
6
Phototoxicity in live fluorescence microscopy, and how to avoid it.
Bioessays. 2017 Aug;39(8). doi: 10.1002/bies.201700003.
7
Live-cell fluorescence imaging.
Methods Cell Biol. 2013;114:125-50. doi: 10.1016/B978-0-12-407761-4.00006-3.
8
Optimizing Long-Term Live Cell Imaging.
Methods Mol Biol. 2022;2440:57-73. doi: 10.1007/978-1-0716-2051-9_3.
9
Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging.
Nat Biotechnol. 2007 Feb;25(2):249-53. doi: 10.1038/nbt1278. Epub 2007 Jan 21.
10
Super-Resolution Live Cell Imaging of Subcellular Structures.
J Vis Exp. 2021 Jan 13(167). doi: 10.3791/61563.

引用本文的文献

2
A data-driven model for mitochondrial inner membrane remodeling as a driving force of organelle shaping.
J Cell Sci. 2025 Jun 15;138(12). doi: 10.1242/jcs.263850. Epub 2025 Jun 20.
5
Potential consequences of phototoxicity on cell function during live imaging of intestinal organoids.
PLoS One. 2024 Nov 15;19(11):e0313213. doi: 10.1371/journal.pone.0313213. eCollection 2024.
6
Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives.
Nat Biomed Eng. 2025 May;9(5):656-670. doi: 10.1038/s41551-024-01274-8. Epub 2024 Oct 29.
7
Gentle Rhodamines for Live-Cell Fluorescence Microscopy.
ACS Cent Sci. 2024 Oct 2;10(10):1933-1944. doi: 10.1021/acscentsci.4c00616. eCollection 2024 Oct 23.
8
Photobleaching and phototoxicity of mitochondria in live cell fluorescent super-resolution microscopy.
Mitochondrial Commun. 2024;2:38-47. doi: 10.1016/j.mitoco.2024.03.001. Epub 2024 Mar 16.
9
Deep-ultraviolet Fourier ptychography (DUV-FP) for label-free biochemical imaging via feature-domain optimization.
APL Photonics. 2024 Sep 1;9(9):090801. doi: 10.1063/5.0227038. Epub 2024 Sep 16.
10
Quantifying DNA damage following light sheet and confocal imaging of the mammalian embryo.
Sci Rep. 2024 Sep 5;14(1):20760. doi: 10.1038/s41598-024-71443-x.

本文引用的文献

1
Noninvasive imaging beyond the diffraction limit of 3D dynamics in thickly fluorescent specimens.
Cell. 2012 Dec 7;151(6):1370-85. doi: 10.1016/j.cell.2012.10.008.
2
LOTOS-based two-photon calcium imaging of dendritic spines in vivo.
Nat Protoc. 2012 Oct;7(10):1818-29. doi: 10.1038/nprot.2012.106. Epub 2012 Sep 13.
3
Predictive-focus illumination for reducing photodamage in live-cell microscopy.
J Microsc. 2012 May;246(2):160-7. doi: 10.1111/j.1365-2818.2012.03605.x. Epub 2012 Mar 20.
4
Parallelized STED fluorescence nanoscopy.
Opt Express. 2011 Nov 21;19(24):23716-26. doi: 10.1364/OE.19.023716.
5
The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly.
Cell. 2011 Aug 19;146(4):555-67. doi: 10.1016/j.cell.2011.07.012.
6
Nanoscopy in a living multicellular organism expressing GFP.
Biophys J. 2011 Jun 22;100(12):L63-5. doi: 10.1016/j.bpj.2011.05.020.
7
Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination.
Nat Methods. 2011 May;8(5):417-23. doi: 10.1038/nmeth.1586. Epub 2011 Mar 4.
8
Fluorescent proteins and their applications in imaging living cells and tissues.
Physiol Rev. 2010 Jul;90(3):1103-63. doi: 10.1152/physrev.00038.2009.
9
Improving the photostability of bright monomeric orange and red fluorescent proteins.
Nat Methods. 2008 Jun;5(6):545-51. doi: 10.1038/nmeth.1209. Epub 2008 May 4.
10
The G2 p38-mediated stress-activated checkpoint pathway becomes attenuated in transformed cells.
Curr Biol. 2007 Dec 18;17(24):2162-8. doi: 10.1016/j.cub.2007.11.028. Epub 2007 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验