Suppr超能文献

局部双层膜变形中堆积与翻转的相互作用。磷脂酰甘油如何挽救心磷脂缺陷型酵母突变体中的线粒体功能。

Interplay of packing and flip-flop in local bilayer deformation. How phosphatidylglycerol could rescue mitochondrial function in a cardiolipin-deficient yeast mutant.

作者信息

Khalifat Nada, Rahimi Mohammad, Bitbol Anne-Florence, Seigneuret Michel, Fournier Jean-Baptiste, Puff Nicolas, Arroyo Marino, Angelova Miglena I

机构信息

UPMC Université Paris 06, UMR 168, Institut Curie, Paris, France; CNRS, UMR 168, Institut Curie, Paris, France.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey.

出版信息

Biophys J. 2014 Aug 19;107(4):879-90. doi: 10.1016/j.bpj.2014.07.015.

Abstract

In a previous work, we have shown that a spatially localized transmembrane pH gradient, produced by acid micro-injection near the external side of cardiolipin-containing giant unilamellar vesicles, leads to the formation of tubules that retract after the dissipation of this gradient. These tubules have morphologies similar to mitochondrial cristae. The tubulation effect is attributable to direct phospholipid packing modification in the outer leaflet, that is promoted by protonation of cardiolipin headgroups. In this study, we compare the case of cardiolipin-containing giant unilamellar vesicles with that of giant unilamellar vesicles that contain phosphatidylglycerol (PG). Local acidification also promotes formation of tubules in the latter. However, compared with cardiolipin-containing giant unilamellar vesicles the tubules are longer, exhibit a visible pearling, and have a much longer lifetime after acid micro-injection is stopped. We attribute these differences to an additional mechanism that increases monolayer surface imbalance, namely inward PG flip-flop promoted by the local transmembrane pH gradient. Simulations using a fully nonlinear membrane model as well as geometrical calculations are in agreement with this hypothesis. Interestingly, among yeast mutants deficient in cardiolipin biosynthesis, only the crd1-null mutant, which accumulates phosphatidylglycerol, displays significant mitochondrial activity. Our work provides a possible explanation of such a property and further emphasizes the salient role of specific lipids in mitochondrial function.

摘要

在之前的一项工作中,我们已经表明,通过在含心磷脂的巨型单层囊泡外侧附近进行酸微注射产生的空间局部跨膜pH梯度,会导致形成小管,该梯度消散后小管会缩回。这些小管的形态与线粒体嵴相似。小管形成效应归因于外层小叶中直接的磷脂堆积修饰,这是由心磷脂头部基团的质子化促进的。在本研究中,我们将含心磷脂的巨型单层囊泡的情况与含磷脂酰甘油(PG)的巨型单层囊泡的情况进行了比较。局部酸化也促进了后者中小管的形成。然而,与含心磷脂的巨型单层囊泡相比,这些小管更长,呈现出明显的串珠状,并且在酸微注射停止后具有长得多的寿命。我们将这些差异归因于一种增加单层表面不平衡的额外机制,即由局部跨膜pH梯度促进的PG向内翻转。使用完全非线性膜模型以及几何计算进行的模拟与这一假设一致。有趣的是,在缺乏心磷脂生物合成的酵母突变体中,只有积累磷脂酰甘油的crd1基因缺失突变体表现出显著的线粒体活性。我们的工作为这种特性提供了一种可能的解释,并进一步强调了特定脂质在线粒体功能中的重要作用。

相似文献

2
Lipid packing variations induced by pH in cardiolipin-containing bilayers: the driving force for the cristae-like shape instability.
Biochim Biophys Acta. 2011 Nov;1808(11):2724-33. doi: 10.1016/j.bbamem.2011.07.013. Epub 2011 Jul 22.
4
Acyl chain composition determines cardiolipin clustering induced by mitochondrial creatine kinase binding to monolayers.
Biochim Biophys Acta. 2011 Apr;1808(4):1129-39. doi: 10.1016/j.bbamem.2011.01.005. Epub 2011 Jan 20.
5
Cardiolipin Preferentially Partitions to the Inner Leaflet of Mixed Lipid Large Unilamellar Vesicles.
J Phys Chem B. 2019 Oct 31;123(43):9111-9122. doi: 10.1021/acs.jpcb.9b07690. Epub 2019 Oct 22.
6
Local anesthetics structure-dependently interact with anionic phospholipid membranes to modify the fluidity.
Chem Biol Interact. 2010 Jan 5;183(1):19-24. doi: 10.1016/j.cbi.2009.10.006.
8
Specific degradation of phosphatidylglycerol is necessary for proper mitochondrial morphology and function.
Biochim Biophys Acta. 2016 Jan;1857(1):34-45. doi: 10.1016/j.bbabio.2015.10.004. Epub 2015 Oct 19.
10
Bupivacaine, but not lidocaine, disrupts cardiolipin-containing small biomimetic unilamellar liposomes.
Chem Biol Interact. 2007 Sep 20;169(3):154-9. doi: 10.1016/j.cbi.2007.06.002. Epub 2007 Jun 14.

引用本文的文献

1
Bilayer Charge Asymmetry and Oil Residues Destabilize Membranes upon Poration.
Langmuir. 2024 Mar 5;40(9):4719-4731. doi: 10.1021/acs.langmuir.3c03370. Epub 2024 Feb 19.
2
Coupling liquid phases in 3D condensates and 2D membranes: Successes, challenges, and tools.
Biophys J. 2024 Jun 4;123(11):1329-1341. doi: 10.1016/j.bpj.2023.12.023. Epub 2023 Dec 29.
5
Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems.
Membranes (Basel). 2021 Jun 23;11(7):465. doi: 10.3390/membranes11070465.
6
Activation of Cytochrome C Peroxidase Function Through Coordinated Foldon Loop Dynamics upon Interaction with Anionic Lipids.
J Mol Biol. 2021 Jul 23;433(15):167057. doi: 10.1016/j.jmb.2021.167057. Epub 2021 May 24.
7
Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets.
Mol Cell Biochem. 2021 Mar;476(3):1605-1629. doi: 10.1007/s11010-020-04021-0. Epub 2021 Jan 7.
8
Lipid flip-flop and desorption from supported lipid bilayers is independent of curvature.
PLoS One. 2020 Dec 30;15(12):e0244460. doi: 10.1371/journal.pone.0244460. eCollection 2020.
9
The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function.
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Jul;1864(7):1039-1052. doi: 10.1016/j.bbalip.2019.03.012. Epub 2019 Apr 2.
10
Effect of cardiolipin on the antimicrobial activity of a new amphiphilic aminoglycoside derivative on Pseudomonas aeruginosa.
PLoS One. 2018 Aug 20;13(8):e0201752. doi: 10.1371/journal.pone.0201752. eCollection 2018.

本文引用的文献

1
Image-based and biochemical assays to investigate endosomal protein sorting.
Methods Enzymol. 2014;534:155-78. doi: 10.1016/B978-0-12-397926-1.00009-3.
2
Long and short lipid molecules experience the same interleaflet drag in lipid bilayers.
Phys Rev Lett. 2013 Jun 28;110(26):268101. doi: 10.1103/PhysRevLett.110.268101. Epub 2013 Jun 24.
3
Islands of conformational stability for filopodia.
PLoS One. 2013;8(3):e59010. doi: 10.1371/journal.pone.0059010. Epub 2013 Mar 21.
4
Membrane properties revealed by spatiotemporal response to a local inhomogeneity.
Biochim Biophys Acta. 2013 Apr;1828(4):1241-9. doi: 10.1016/j.bbamem.2012.11.024. Epub 2012 Nov 29.
6
Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes [corrected].
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011932. doi: 10.1103/PhysRevE.86.011932. Epub 2012 Jul 31.
7
Regulation of the Golgi complex by phospholipid remodeling enzymes.
Biochim Biophys Acta. 2012 Aug;1821(8):1078-88. doi: 10.1016/j.bbalip.2012.04.004. Epub 2012 Apr 22.
8
Lipid packing variations induced by pH in cardiolipin-containing bilayers: the driving force for the cristae-like shape instability.
Biochim Biophys Acta. 2011 Nov;1808(11):2724-33. doi: 10.1016/j.bbamem.2011.07.013. Epub 2011 Jul 22.
9
Dynamical membrane curvature instability controlled by intermonolayer friction.
J Phys Condens Matter. 2011 Jul 20;23(28):284102. doi: 10.1088/0953-8984/23/28/284102. Epub 2011 Jun 27.
10
Interplay of proteins and lipids in generating membrane curvature.
Curr Opin Cell Biol. 2010 Aug;22(4):430-6. doi: 10.1016/j.ceb.2010.05.002. Epub 2010 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验