Suppr超能文献

双层膜的形状动力学、脂质流体动力学及复杂粘弹性[已修正]

Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes [corrected].

作者信息

Rahimi Mohammad, Arroyo Marino

机构信息

Departament de Matemàtica Aplicada III, LaCàN, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011932. doi: 10.1103/PhysRevE.86.011932. Epub 2012 Jul 31.

Abstract

Biological membranes are continuously brought out of equilibrium, as they shape organelles, package and transport cargo, or respond to external actions. Even the dynamics of plain lipid membranes in experimental model systems are very complex due to the tight interplay between the bilayer architecture, the shape dynamics, and the rearrangement of the lipid molecules. We formulate and numerically implement a continuum model of the shape dynamics and lipid hydrodynamics, which describes the bilayer by its midsurface and by a lipid density field for each monolayer. The viscoelastic response of bilayers is determined by the stretching and curvature elasticity, and by the inter-monolayer friction and the membrane interfacial shear viscosity. While the bilayer equilibria are well understood theoretically, dynamical calculations have relied on simplified continuum approaches of uncertain transferability, or on molecular simulations reaching very limited length and time scales. Our approach incorporates the main physics, is fully nonlinear, does not assume predefined shapes, and can access a wide range of time and length scales. We validate it with the well understood tether extension. We investigate the tubular lipid transport between cells, the dynamics of bud absorption by a planar membrane, and the fate of a localized lipid density asymmetry in vesicles. These axisymmetric examples bear biological relevance and highlight the diversity of dynamical regimes that bilayers can experience.

摘要

生物膜不断地偏离平衡状态,因为它们塑造细胞器、包裹和运输物质,或对外界作用作出反应。即使在实验模型系统中,普通脂质膜的动力学也非常复杂,这是由于双层结构、形状动力学和脂质分子重排之间的紧密相互作用。我们制定并通过数值方法实现了一个形状动力学和脂质流体动力学的连续介质模型,该模型通过其中面和每个单层的脂质密度场来描述双层膜。双层膜的粘弹性响应由拉伸和曲率弹性、层间摩擦和膜界面剪切粘度决定。虽然双层膜平衡在理论上已得到很好的理解,但动力学计算依赖于具有不确定可转移性的简化连续介质方法,或依赖于达到非常有限长度和时间尺度的分子模拟。我们的方法包含了主要物理原理,是完全非线性的,不假设预定义形状,并且可以涵盖广泛的时间和长度尺度。我们用众所周知的系链延伸对其进行了验证。我们研究了细胞间的管状脂质运输、平面膜对芽的吸收动力学以及囊泡中局部脂质密度不对称的命运。这些轴对称的例子具有生物学相关性,并突出了双层膜可能经历的动力学状态的多样性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验