Hilsch Malte, Goldenbogen Björn, Sieben Christian, Höfer Chris T, Rabe Jürgen P, Klipp Edda, Herrmann Andreas, Chiantia Salvatore
AG Molekulare Biophysik, Humboldt-Universität zu Berlin, Germany.
AG Theoretische Biophysik, Institut für Biologie, Humboldt-Universität zu Berlin, Germany.
Biophys J. 2014 Aug 19;107(4):912-23. doi: 10.1016/j.bpj.2014.06.042.
The matrix protein M1 plays a pivotal role in the budding of influenza virus from the plasma membrane (PM) of infected cells. This protein interacts with viral genetic material and envelope proteins while binding to the inner leaflet of the PM. Its oligomerization is therefore closely connected to the assembly of viral components and the formation of new virions. Of interest, the molecular details of M1 interaction with lipids and other viral proteins are far from being understood, and it remains to be determined whether the multimerization of M1 is affected by its binding to the PM and interaction with its components. To clarify the connection between M1 oligomerization and binding to lipid membranes, we applied a combination of several quantitative microscopy approaches. First, we used number and brightness (N&B) microscopy to characterize protein multimerization upon interaction with the PM of living cells. Second, we used controlled biophysical models of the PM (i.e., supported bilayers) to delve into the details of M1-lipid and M1-M1 interactions by employing a combination of raster image correlation spectroscopy (RICS), fluorescence correlation spectroscopy (FCS), and atomic force microscopy (AFM). Our results show that M1 oligomer formation is strongly enhanced by membrane binding and does not necessarily require the presence of other viral proteins. Furthermore, we propose a specific model to explain M1 binding to the lipid bilayer and the formation of multimers.
基质蛋白M1在流感病毒从受感染细胞的质膜(PM)出芽过程中起关键作用。该蛋白与病毒遗传物质和包膜蛋白相互作用,同时与质膜的内小叶结合。因此,其寡聚化与病毒成分的组装和新病毒粒子的形成密切相关。有趣的是,M1与脂质和其他病毒蛋白相互作用的分子细节远未被了解,M1的多聚化是否受其与质膜的结合及其成分相互作用的影响仍有待确定。为了阐明M1寡聚化与脂质膜结合之间的联系,我们应用了几种定量显微镜方法的组合。首先,我们使用数量和亮度(N&B)显微镜来表征与活细胞质膜相互作用时的蛋白质多聚化。其次,我们使用质膜的可控生物物理模型(即支持的双层膜),通过结合光栅图像相关光谱(RICS)、荧光相关光谱(FCS)和原子力显微镜(AFM)来深入研究M1-脂质和M1-M1相互作用的细节。我们的结果表明,膜结合强烈增强了M1寡聚体的形成,并且不一定需要其他病毒蛋白的存在。此外,我们提出了一个特定模型来解释M1与脂质双层的结合以及多聚体的形成。