Suppr超能文献

甲型流感病毒基质蛋白M1与脂质膜结合后会形成多聚体。

Influenza A matrix protein M1 multimerizes upon binding to lipid membranes.

作者信息

Hilsch Malte, Goldenbogen Björn, Sieben Christian, Höfer Chris T, Rabe Jürgen P, Klipp Edda, Herrmann Andreas, Chiantia Salvatore

机构信息

AG Molekulare Biophysik, Humboldt-Universität zu Berlin, Germany.

AG Theoretische Biophysik, Institut für Biologie, Humboldt-Universität zu Berlin, Germany.

出版信息

Biophys J. 2014 Aug 19;107(4):912-23. doi: 10.1016/j.bpj.2014.06.042.

Abstract

The matrix protein M1 plays a pivotal role in the budding of influenza virus from the plasma membrane (PM) of infected cells. This protein interacts with viral genetic material and envelope proteins while binding to the inner leaflet of the PM. Its oligomerization is therefore closely connected to the assembly of viral components and the formation of new virions. Of interest, the molecular details of M1 interaction with lipids and other viral proteins are far from being understood, and it remains to be determined whether the multimerization of M1 is affected by its binding to the PM and interaction with its components. To clarify the connection between M1 oligomerization and binding to lipid membranes, we applied a combination of several quantitative microscopy approaches. First, we used number and brightness (N&B) microscopy to characterize protein multimerization upon interaction with the PM of living cells. Second, we used controlled biophysical models of the PM (i.e., supported bilayers) to delve into the details of M1-lipid and M1-M1 interactions by employing a combination of raster image correlation spectroscopy (RICS), fluorescence correlation spectroscopy (FCS), and atomic force microscopy (AFM). Our results show that M1 oligomer formation is strongly enhanced by membrane binding and does not necessarily require the presence of other viral proteins. Furthermore, we propose a specific model to explain M1 binding to the lipid bilayer and the formation of multimers.

摘要

基质蛋白M1在流感病毒从受感染细胞的质膜(PM)出芽过程中起关键作用。该蛋白与病毒遗传物质和包膜蛋白相互作用,同时与质膜的内小叶结合。因此,其寡聚化与病毒成分的组装和新病毒粒子的形成密切相关。有趣的是,M1与脂质和其他病毒蛋白相互作用的分子细节远未被了解,M1的多聚化是否受其与质膜的结合及其成分相互作用的影响仍有待确定。为了阐明M1寡聚化与脂质膜结合之间的联系,我们应用了几种定量显微镜方法的组合。首先,我们使用数量和亮度(N&B)显微镜来表征与活细胞质膜相互作用时的蛋白质多聚化。其次,我们使用质膜的可控生物物理模型(即支持的双层膜),通过结合光栅图像相关光谱(RICS)、荧光相关光谱(FCS)和原子力显微镜(AFM)来深入研究M1-脂质和M1-M1相互作用的细节。我们的结果表明,膜结合强烈增强了M1寡聚体的形成,并且不一定需要其他病毒蛋白的存在。此外,我们提出了一个特定模型来解释M1与脂质双层的结合以及多聚体的形成。

相似文献

1
Influenza A matrix protein M1 multimerizes upon binding to lipid membranes.
Biophys J. 2014 Aug 19;107(4):912-23. doi: 10.1016/j.bpj.2014.06.042.
3
Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization.
Biosci Rep. 2019 Aug 5;39(8). doi: 10.1042/BSR20191024. Print 2019 Aug 30.
4
Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane.
J Virol. 2017 Apr 13;91(9). doi: 10.1128/JVI.02104-16. Print 2017 May 1.
5
Structural determinants of the interaction between influenza A virus matrix protein M1 and lipid membranes.
Biochim Biophys Acta Biomembr. 2019 Jun 1;1861(6):1123-1134. doi: 10.1016/j.bbamem.2019.03.013. Epub 2019 Mar 20.
8
9
Influenza A M2 recruits M1 to the plasma membrane: A fluorescence fluctuation microscopy study.
Biophys J. 2021 Dec 21;120(24):5478-5490. doi: 10.1016/j.bpj.2021.11.023. Epub 2021 Nov 19.

引用本文的文献

1
Inhibitory effects of a hot-water extract of cumin fruit on influenza A virus infection.
PLoS One. 2025 Jun 27;20(6):e0326423. doi: 10.1371/journal.pone.0326423. eCollection 2025.
2
The Effects of Viral Structural Proteins on Acidic Phospholipids in Host Membranes.
Viruses. 2024 Oct 31;16(11):1714. doi: 10.3390/v16111714.
3
A physical model for M1-mediated influenza A virus assembly.
Biophys J. 2025 Jan 7;124(1):134-144. doi: 10.1016/j.bpj.2024.11.016. Epub 2024 Nov 20.
4
Anti-influenza A (H1N1) virus effect of gallic acid through inhibition of virulent protein production and association with autophagy.
Food Sci Nutr. 2023 Nov 21;12(3):1605-1615. doi: 10.1002/fsn3.3852. eCollection 2024 Mar.
5
Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets.
Nat Commun. 2023 Sep 27;14(1):6030. doi: 10.1038/s41467-023-41442-z.
9
Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses.
Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2022;16(4):247-260. doi: 10.1134/S1990747822050038. Epub 2022 Dec 9.

本文引用的文献

1
Structural analysis of influenza A virus matrix protein M1 and its self-assemblies at low pH.
PLoS One. 2013 Dec 16;8(12):e82431. doi: 10.1371/journal.pone.0082431. eCollection 2013.
2
High-fidelity protein targeting into membrane lipid microdomains in living cells.
Angew Chem Int Ed Engl. 2014 Jan 27;53(5):1311-5. doi: 10.1002/anie.201306328. Epub 2013 Dec 18.
3
Quantitative analysis of self-association and mobility of annexin A4 at the plasma membrane.
Biophys J. 2013 May 7;104(9):1875-85. doi: 10.1016/j.bpj.2013.02.057.
5
Raster image correlation spectroscopy and number and brightness analysis.
Methods Enzymol. 2013;518:121-44. doi: 10.1016/B978-0-12-388422-0.00006-6.
7
Effect of envelope proteins on the mechanical properties of influenza virus.
J Biol Chem. 2012 Nov 30;287(49):41078-88. doi: 10.1074/jbc.M112.412726. Epub 2012 Oct 9.
8
Investigation of Ebola VP40 assembly and oligomerization in live cells using number and brightness analysis.
Biophys J. 2012 Jun 6;102(11):2517-25. doi: 10.1016/j.bpj.2012.04.022. Epub 2012 Jun 5.
10
Association of influenza virus proteins with membrane rafts.
Adv Virol. 2011;2011:370606. doi: 10.1155/2011/370606. Epub 2011 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验