Suppr超能文献

一种用于癌症发病率和死亡率的年龄-时期-队列分析的网络工具。

A web tool for age-period-cohort analysis of cancer incidence and mortality rates.

作者信息

Rosenberg Philip S, Check David P, Anderson William F

机构信息

Biostatistics Branch, Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland.

出版信息

Cancer Epidemiol Biomarkers Prev. 2014 Nov;23(11):2296-302. doi: 10.1158/1055-9965.EPI-14-0300. Epub 2014 Aug 21.

Abstract

BACKGROUND

Age-period-cohort (APC) analysis can inform registry-based studies of cancer incidence and mortality, but concerns about statistical identifiability and interpretability, as well as the learning curves of statistical software packages, have limited its uptake.

METHODS

We implemented a panel of easy-to-interpret estimable APC functions and corresponding Wald tests in R code that can be accessed through a user-friendly Web tool.

RESULTS

Input data for the Web tool consist of age-specific numbers of events and person-years over time, in the form of a rate matrix of paired columns. Output functions include model-based estimators of cross-sectional and longitudinal age-specific rates, period and cohort rate ratios that incorporate the overall annual percentage change (net drift), and estimators of the age-specific annual percentage change (local drifts). The Web tool includes built-in examples for teaching and demonstration. User data can be input from a Microsoft Excel worksheet or by uploading a comma-separated-value file. Model outputs can be saved in a variety of formats, including R and Excel.

CONCLUSIONS

APC methodology can now be carried out through a freely available user-friendly Web tool. The tool can be accessed at http://analysistools.nci.nih.gov/apc/.

IMPACT

The Web tool can help cancer surveillance researchers make important discoveries about emerging cancer trends and patterns.

摘要

背景

年龄-时期-队列(APC)分析可为基于登记处的癌症发病率和死亡率研究提供信息,但对统计可识别性和可解释性的担忧,以及统计软件包的学习曲线,限制了其应用。

方法

我们在R代码中实现了一组易于解释的可估计APC函数和相应的Wald检验,可通过一个用户友好的网络工具访问。

结果

网络工具的输入数据由随时间变化的特定年龄事件数和人年数组成,形式为成对列的率矩阵。输出函数包括基于模型的横断面和纵向特定年龄率估计值、纳入总体年度百分比变化(净漂移)的时期和队列率比,以及特定年龄年度百分比变化(局部漂移)的估计值。网络工具包括用于教学和演示的内置示例。用户数据可以从Microsoft Excel工作表输入,也可以通过上传逗号分隔值文件输入。模型输出可以保存为多种格式,包括R和Excel格式。

结论

现在可以通过一个免费的用户友好网络工具进行APC方法。该工具可在http://analysistools.nci.nih.gov/apc/访问。

影响

该网络工具可帮助癌症监测研究人员发现有关新兴癌症趋势和模式的重要信息。

相似文献

1
A web tool for age-period-cohort analysis of cancer incidence and mortality rates.
Cancer Epidemiol Biomarkers Prev. 2014 Nov;23(11):2296-302. doi: 10.1158/1055-9965.EPI-14-0300. Epub 2014 Aug 21.
3
Italian cancer figures, report 2012: Cancer in children and adolescents.
Epidemiol Prev. 2013 Jan-Feb;37(1 Suppl 1):1-225.
5
Age period cohort analysis of cancer incidence from 1990 to 2019 in Türkiye.
Cancer Epidemiol. 2025 Jun;96:102803. doi: 10.1016/j.canep.2025.102803. Epub 2025 Mar 21.
7
Scientific LogAnalyzer: a web-based tool for analyses of server log files in psychological research.
Behav Res Methods Instrum Comput. 2004 May;36(2):304-11. doi: 10.3758/bf03195576.
8
[Statistical Analysis of Rates and Trends (SART): a web-based tool for statistical calculation of population indicators].
Gac Sanit. 2011 Sep-Oct;25(5):427-31. doi: 10.1016/j.gaceta.2011.04.004. Epub 2011 Jun 28.
10
CoMutPlotter: a web tool for visual summary of mutations in cancer cohorts.
BMC Med Genomics. 2019 Jul 11;12(Suppl 5):99. doi: 10.1186/s12920-019-0510-y.

引用本文的文献

3
Gallbladder and biliary tract cancer burden trends in Brazil, Russian Federation, India, China, and South Africa in 1990-2021.
World J Gastrointest Oncol. 2025 Aug 15;17(8):109245. doi: 10.4251/wjgo.v17.i8.109245.
4
Global Burden of Hepatoblastoma From 1990 to 2021 and Projection to 2030.
Cancer Med. 2025 Aug;14(16):e71163. doi: 10.1002/cam4.71163.
6
Global ischemic heart disease burden attributable to environmental risk factors, 1990-2021: an Age-Period-Cohort analysis.
Front Public Health. 2025 Aug 1;13:1622108. doi: 10.3389/fpubh.2025.1622108. eCollection 2025.
9
Global burden on drug use disorders from 1990 to 2021 and projections to 2046.
Front Public Health. 2025 Jul 28;13:1550518. doi: 10.3389/fpubh.2025.1550518. eCollection 2025.

本文引用的文献

1
Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers.
J Clin Oncol. 2013 Dec 20;31(36):4550-9. doi: 10.1200/JCO.2013.50.3870. Epub 2013 Nov 18.
2
Pancreatic cancer death rates by race among US men and women, 1970-2009.
J Natl Cancer Inst. 2013 Nov 20;105(22):1694-700. doi: 10.1093/jnci/djt292. Epub 2013 Nov 7.
3
Ovarian cancer incidence trends in relation to changing patterns of menopausal hormone therapy use in the United States.
J Clin Oncol. 2013 Jun 10;31(17):2146-51. doi: 10.1200/JCO.2012.45.5758. Epub 2013 May 6.
4
Divergent estrogen receptor-positive and -negative breast cancer trends and etiologic heterogeneity in Denmark.
Int J Cancer. 2013 Nov;133(9):2201-6. doi: 10.1002/ijc.28222. Epub 2013 Jun 13.
5
Are incidence rates of adult leukemia in the United States significantly associated with birth cohort?
Cancer Epidemiol Biomarkers Prev. 2012 Dec;21(12):2159-66. doi: 10.1158/1055-9965.EPI-12-0910. Epub 2012 Oct 12.
6
Significant calendar period deviations in testicular germ cell tumors indicate that postnatal exposures are etiologically relevant.
Cancer Causes Control. 2012 Oct;23(10):1593-8. doi: 10.1007/s10552-012-0036-5. Epub 2012 Jul 28.
7
Increasing lung cancer death rates among young women in southern and midwestern States.
J Clin Oncol. 2012 Aug 1;30(22):2739-44. doi: 10.1200/JCO.2012.42.6098. Epub 2012 Jun 25.
8
Global cancer transitions according to the Human Development Index (2008-2030): a population-based study.
Lancet Oncol. 2012 Aug;13(8):790-801. doi: 10.1016/S1470-2045(12)70211-5. Epub 2012 Jun 1.
10
Age-period-cohort models in cancer surveillance research: ready for prime time?
Cancer Epidemiol Biomarkers Prev. 2011 Jul;20(7):1263-8. doi: 10.1158/1055-9965.EPI-11-0421. Epub 2011 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验