Suppr超能文献

无微调的多元数据中的齐普夫定律与临界性

Zipf's law and criticality in multivariate data without fine-tuning.

作者信息

Schwab David J, Nemenman Ilya, Mehta Pankaj

机构信息

Department of Physics and Lewis-Sigler Institute, Princeton University, Princeton, New Jersey 08540, USA.

Departments of Physics and Biology, Emory University, Atlanta, Georgia 30322, USA.

出版信息

Phys Rev Lett. 2014 Aug 8;113(6):068102. doi: 10.1103/PhysRevLett.113.068102. Epub 2014 Aug 7.

Abstract

The joint probability distribution of states of many degrees of freedom in biological systems, such as firing patterns in neural networks or antibody sequence compositions, often follows Zipf's law, where a power law is observed on a rank-frequency plot. This behavior has been shown to imply that these systems reside near a unique critical point where the extensive parts of the entropy and energy are exactly equal. Here, we show analytically, and via numerical simulations, that Zipf-like probability distributions arise naturally if there is a fluctuating unobserved variable (or variables) that affects the system, such as a common input stimulus that causes individual neurons to fire at time-varying rates. In statistics and machine learning, these are called latent-variable or mixture models. We show that Zipf's law arises generically for large systems, without fine-tuning parameters to a point. Our work gives insight into the ubiquity of Zipf's law in a wide range of systems.

摘要

生物系统中多自由度状态的联合概率分布,例如神经网络中的放电模式或抗体序列组成,通常遵循齐普夫定律,即在秩-频率图上观察到幂律。这种行为已被证明意味着这些系统处于一个独特的临界点附近,在该点熵和能量的广延部分恰好相等。在这里,我们通过解析和数值模拟表明,如果存在影响系统的波动的未观察到的变量(一个或多个),例如导致单个神经元以随时间变化的速率放电的共同输入刺激,那么类似齐普夫的概率分布就会自然出现。在统计学和机器学习中,这些被称为潜变量或混合模型。我们表明,对于大型系统,齐普夫定律通常会出现,无需将参数微调至某一点。我们的工作深入了解了齐普夫定律在广泛系统中的普遍性。

相似文献

1
Zipf's law and criticality in multivariate data without fine-tuning.无微调的多元数据中的齐普夫定律与临界性
Phys Rev Lett. 2014 Aug 8;113(6):068102. doi: 10.1103/PhysRevLett.113.068102. Epub 2014 Aug 7.
7
Beyond Zipf's Law: The Lavalette Rank Function and Its Properties.超越齐普夫定律:拉瓦莱特排名函数及其性质。
PLoS One. 2016 Sep 22;11(9):e0163241. doi: 10.1371/journal.pone.0163241. eCollection 2016.

引用本文的文献

1
Fluctuating landscapes and heavy tails in animal behavior.动物行为中的波动景观与重尾现象。
PRX Life. 2024 Apr-Jun;2(2). doi: 10.1103/prxlife.2.023001. Epub 2024 Apr 2.
5
Inferring couplings in networks across order-disorder phase transitions.推断跨越有序-无序相变的网络中的耦合。
Phys Rev Res. 2022 Jun-Aug;4(2). doi: 10.1103/physrevresearch.4.023240. Epub 2022 Jun 24.
9
Fluctuating landscapes and heavy tails in animal behavior.动物行为中的波动景观与重尾现象。
bioRxiv. 2023 Oct 23:2023.01.03.522580. doi: 10.1101/2023.01.03.522580.

本文引用的文献

2
Statistical mechanics for natural flocks of birds.鸟类自然群体的统计力学。
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4786-91. doi: 10.1073/pnas.1118633109. Epub 2012 Mar 16.
4
Maximum entropy models for antibody diversity.最大熵模型在抗体多样性中的应用。
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5405-10. doi: 10.1073/pnas.1001705107. Epub 2010 Mar 8.
7
Broadband criticality of human brain network synchronization.人类脑网络同步的宽带临界性
PLoS Comput Biol. 2009 Mar;5(3):e1000314. doi: 10.1371/journal.pcbi.1000314. Epub 2009 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验