Costa Antonio Carlos, Vergassola Massimo
Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
bioRxiv. 2023 Oct 23:2023.01.03.522580. doi: 10.1101/2023.01.03.522580.
Animal behavior is shaped by a myriad of mechanisms acting on a wide range of scales. This immense variability hampers quantitative reasoning and renders the identification of universal principles elusive. Through data analysis and theory, we here show that slow non-ergodic drives generally give rise to heavy-tailed statistics in behaving animals. We leverage high-resolution recordings of locomotion to extract a self-consistent reduced order model for an inferred reaction coordinate, bridging from sub-second chaotic dynamics to long-lived stochastic transitions among metastable states. The slow mode dynamics exhibits heavy-tailed first passage time distributions and correlation functions, and we show that such heavy tails can be explained by dynamics on a time-dependent potential landscape. Inspired by these results, we introduce a generic model in which we separate faster mixing modes that evolve on a quasi-stationary potential, from slower non-ergodic modes that drive the potential landscape, and reflect slowly varying internal states. We show that, even for simple potential landscapes, heavy tails emerge when barrier heights fluctuate slowly and strongly enough. In particular, the distribution of first passage times and the correlation function can asymptote to a power law, with related exponents that depend on the strength and nature of the fluctuations. We support our theoretical findings through direct numerical simulations.
动物行为是由作用于广泛尺度的无数机制塑造的。这种巨大的变异性阻碍了定量推理,使得普遍原则的识别变得难以捉摸。通过数据分析和理论,我们在此表明,缓慢的非遍历驱动通常会在行为动物中产生重尾统计。我们利用高分辨率的运动记录来提取一个关于推断反应坐标的自洽降阶模型,从亚秒级的混沌动力学过渡到亚稳态之间的长寿命随机转变。慢模式动力学表现出重尾的首次通过时间分布和相关函数,并且我们表明这种重尾可以由时间依赖势景观上的动力学来解释。受这些结果的启发,我们引入了一个通用模型,在该模型中,我们将在准静态势上演化的较快混合模式与驱动势景观并反映缓慢变化内部状态的较慢非遍历模式分开。我们表明,即使对于简单的势景观,当势垒高度足够缓慢且强烈地波动时,也会出现重尾。特别是,首次通过时间的分布和相关函数可以渐近于幂律分布,相关指数取决于波动的强度和性质。我们通过直接数值模拟来支持我们的理论发现。