Suppr超能文献

用于系统生物学和合成生物学的生化模型的元随机模拟

Meta-stochastic simulation of biochemical models for systems and synthetic biology.

作者信息

Sanassy Daven, Widera Paweł, Krasnogor Natalio

机构信息

Interdisciplinary Computing and Complex BioSystems (ICOS) Research Group, School of Computing Science, Newcastle University , Newcastle upon Tyne, Tyne and Wear, NE1 7RU, United Kingdom.

出版信息

ACS Synth Biol. 2015 Jan 16;4(1):39-47. doi: 10.1021/sb5001406. Epub 2014 Oct 7.

Abstract

Stochastic simulation algorithms (SSAs) are used to trace realistic trajectories of biochemical systems at low species concentrations. As the complexity of modeled biosystems increases, it is important to select the best performing SSA. Numerous improvements to SSAs have been introduced but they each only tend to apply to a certain class of models. This makes it difficult for a systems or synthetic biologist to decide which algorithm to employ when confronted with a new model that requires simulation. In this paper, we demonstrate that it is possible to determine which algorithm is best suited to simulate a particular model and that this can be predicted a priori to algorithm execution. We present a Web based tool ssapredict that allows scientists to upload a biochemical model and obtain a prediction of the best performing SSA. Furthermore, ssapredict gives the user the option to download our high performance simulator ngss preconfigured to perform the simulation of the queried biochemical model with the predicted fastest algorithm as the simulation engine. The ssapredict Web application is available at http://ssapredict.ico2s.org. It is free software and its source code is distributed under the terms of the GNU Affero General Public License.

摘要

随机模拟算法(SSA)用于在低物种浓度下追踪生化系统的实际轨迹。随着所建模生物系统的复杂性增加,选择性能最佳的SSA非常重要。人们已经对SSA进行了许多改进,但每种改进往往只适用于某一类模型。这使得系统生物学家或合成生物学家在面对需要模拟的新模型时,难以决定使用哪种算法。在本文中,我们证明可以确定哪种算法最适合模拟特定模型,并且这可以在算法执行前进行预测。我们展示了一个基于网络的工具ssapredict,它允许科学家上传生化模型并获得性能最佳的SSA的预测结果。此外,ssapredict为用户提供了下载我们的高性能模拟器ngss的选项,该模拟器已预先配置好,以预测的最快算法作为模拟引擎来执行所查询生化模型的模拟。ssapredict网络应用程序可在http://ssapredict.ico2s.org上获取。它是免费软件,其源代码根据GNU Affero通用公共许可证的条款进行分发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验