Webb Ian K, Garimella Sandilya V B, Tolmachev Aleksey V, Chen Tsung-Chi, Zhang Xinyu, Norheim Randolph V, Prost Spencer A, LaMarche Brian, Anderson Gordon A, Ibrahim Yehia M, Smith Richard D
Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 3335 Innovation Ave. (K8-98), P.O. Box 999, Richland, Washington 99352, United States.
Anal Chem. 2014 Sep 16;86(18):9169-76. doi: 10.1021/ac502055e. Epub 2014 Sep 5.
We report on the performance of structures for lossless ion manipulation (SLIM) as a means for transmitting ions and performing ion mobility separations (IMS). Ions were successfully transferred from an electrospray ionization (ESI) source to the TOF MS analyzer by means of a linear SLIM, demonstrating lossless ion transmission and an alternative arrangement including a 90° turn. First, the linear geometry was optimized for radial confinement by tuning RF on the central "rung" electrodes and potentials on the DC-only guard electrodes. Selecting an appropriate DC guard bias (2-6 V) and RF amplitude (≥160 V(p-p) at 750 kHz) resulted in the greatest ion intensities. Close to ideal IMS resolving power was maintained over a significant range of applied voltages. Second, the 90° turn was optimized for radial confinement by tuning RF on the rung electrodes and DC on the guard electrodes. However, both resolving power and ion transmission showed a dependence on these voltages, and the best conditions for both were >300 V(p-p) RF (685 kHz) and 7-11 V guard DC bias. Both geometries provide IMS resolving powers at the theoretical limit (R ~ 58), showing that degraded resolution from a "racetrack" effect from turning around a corner can be successfully avoided, and the capability also was maintained for essentially lossless ion transmission.
我们报告了无损离子操纵结构(SLIM)作为传输离子和进行离子迁移率分离(IMS)的一种手段的性能。通过线性SLIM成功地将离子从电喷雾电离(ESI)源转移到飞行时间质谱(TOF MS)分析仪,展示了无损离子传输以及包括90°转弯的另一种布置。首先,通过调节中心“梯级”电极上的射频(RF)和仅直流(DC)保护电极上的电位,对线性几何结构进行了径向约束优化。选择合适的直流保护偏置(2 - 6 V)和射频幅度(在750 kHz时≥160 V(峰 - 峰值))可得到最大的离子强度。在相当大的施加电压范围内保持了接近理想的离子迁移率分离分辨率。其次,通过调节梯级电极上的射频和保护电极上的直流,对90°转弯进行了径向约束优化。然而,分辨率和离子传输都显示出对这些电压的依赖性,两者的最佳条件是>300 V(峰 - 峰值)射频(685 kHz)和7 - 11 V保护直流偏置。两种几何结构都在理论极限(R ~ 58)下提供离子迁移率分离分辨率,表明可以成功避免因转弯产生的“跑道”效应导致的分辨率下降,并且基本上无损离子传输的能力也得以保持。