Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP, Moscow B-437, Russia.
Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, D-48149 Münster, Germany.
Beilstein J Org Chem. 2014 Jul 22;10:1657-69. doi: 10.3762/bjoc.10.173. eCollection 2014.
Two approaches to the synthesis of 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)adenine (1, clofarabine) were studied. The first approach consists in the chemical synthesis of 2-deoxy-2-fluoro-α-D-arabinofuranose-1-phosphate (12a, (2F)Ara-1P) via three step conversion of 1,3,5-tri-O-benzoyl-2-deoxy-2-fluoro-α-D-arabinofuranose (9) into the phosphate 12a without isolation of intermediary products. Condensation of 12a with 2-chloroadenine catalyzed by the recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of clofarabine in 67% yield. The reaction was also studied with a number of purine bases (2-aminoadenine and hypoxanthine), their analogues (5-aza-7-deazaguanine and 8-aza-7-deazahypoxanthine) and thymine. The results were compared with those of a similar reaction with α-D-arabinofuranose-1-phosphate (13a, Ara-1P). Differences of the reactivity of various substrates were analyzed by ab initio calculations in terms of the electronic structure (natural purines vs analogues) and stereochemical features ((2F)Ara-1P vs Ara-1P) of the studied compounds to determine the substrate recognition by E. coli nucleoside phosphorylases. The second approach starts with the cascade one-pot enzymatic transformation of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a, followed by its condensation with 2-chloroadenine thereby affording clofarabine in ca. 48% yield in 24 h. The following recombinant E. coli enzymes catalyze the sequential conversion of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a: ribokinase (2-deoxy-2-fluoro-D-arabinofuranose-5-phosphate), phosphopentomutase (PPN; no 1,6-diphosphates of D-hexoses as co-factors required) (12a), and finally PNP. The substrate activities of D-arabinose, D-ribose and D-xylose in the similar cascade syntheses of the relevant 2-chloroadenine nucleosides were studied and compared with the activities of 2-deoxy-2-fluoro-D-arabinose. As expected, D-ribose exhibited the best substrate activity [90% yield of 2-chloroadenosine (8) in 30 min], D-arabinose reached an equilibrium at a concentration of ca. 1:1 of a starting base and the formed 2-chloro-9-(β-D-arabinofuranosyl)adenine (6) in 45 min, the formation of 2-chloro-9-(β-D-xylofuranosyl)adenine (7) proceeded very slowly attaining ca. 8% yield in 48 h.
两种合成 2-氯-9-(2-去氧-2-氟-β-D-阿拉伯呋喃核苷)腺嘌呤(1,克拉屈滨)的方法进行了研究。第一种方法包括通过三步转化 1,3,5-三-O-苯甲酰基-2-去氧-2-氟-α-D-阿拉伯呋喃糖(9)为磷酸 12a 而不分离中间体产物,来化学合成 2-脱氧-2-氟-α-D-阿拉伯呋喃糖-1-磷酸(12a,(2F)Ara-1P)。12a 与 2-氯腺嘌呤在重组大肠杆菌嘌呤核苷磷酸化酶(PNP)的催化下缩合,得到 67%产率的克拉屈滨。该反应还研究了一系列嘌呤碱基(2-氨基腺嘌呤和次黄嘌呤)、它们的类似物(5-氮杂-7-脱氮鸟嘌呤和 8-氮杂-7-脱氮次黄嘌呤)和胸腺嘧啶。将结果与类似的α-D-阿拉伯呋喃糖-1-磷酸(13a,Ara-1P)反应的结果进行了比较。通过从头算计算,根据研究化合物的电子结构(天然嘌呤与类似物)和立体化学特征((2F)Ara-1P 与 Ara-1P),分析了各种底物的反应性差异,以确定大肠杆菌核苷磷酸化酶对底物的识别。第二种方法从 2-脱氧-2-氟-D-阿拉伯糖的级联一锅酶转化开始,生成磷酸 12a,然后与 2-氯腺嘌呤缩合,在 24 小时内以约 48%的产率得到克拉屈滨。以下重组大肠杆菌酶催化 2-脱氧-2-氟-D-阿拉伯糖转化为磷酸 12a 的顺序转化:核酮激酶(2-脱氧-2-氟-D-阿拉伯呋喃糖-5-磷酸)、磷酸戊糖变位酶(PPN;不需要 D-己糖的 1,6-二磷酸作为辅助因子)(12a),最后是 PNP。研究了 D-阿拉伯糖、D-核糖和 D-木糖在类似的级联合成相关 2-氯腺嘌呤核苷中的底物活性,并与 2-脱氧-2-氟-D-阿拉伯糖的活性进行了比较。正如预期的那样,D-核糖表现出最好的底物活性[30 分钟内 2-氯腺苷(8)的产率为 90%],D-阿拉伯糖在约 1:1 的起始碱基浓度下达到平衡,在 45 分钟内形成 2-氯-9-(β-D-阿拉伯呋喃核苷)腺嘌呤(6),2-氯-9-(β-D-木呋喃核苷)腺嘌呤(7)的形成非常缓慢,在 48 小时内仅达到约 8%的产率。