Suppr超能文献

二维数字乳腺摄影(FFDM)和数字乳腺断层合成(DBT)上微钙化簇的特征:DBT 是否低估了微钙化簇?一项多中心研究的结果。

Characterisation of microcalcification clusters on 2D digital mammography (FFDM) and digital breast tomosynthesis (DBT): does DBT underestimate microcalcification clusters? Results of a multicentre study.

机构信息

Institute of Anatomy, Department of Experimental Medicine (DIMES), University of Genoa, Largo Rosanna Benzi 8, 16132, Genoa, Italy,

出版信息

Eur Radiol. 2015 Jan;25(1):9-14. doi: 10.1007/s00330-014-3402-8. Epub 2014 Aug 29.

Abstract

OBJECTIVES

To compare DBT and FFDM in the classification of microcalcification clusters (MCs) using BI-RADS.

METHODS

This Institutional Review Board-approved study was undertaken in three centres. A total of 107 MCs evaluated with both DBT and FFDM were randomised for prospective reading by six experienced breast radiologists and classified using BI-RADS.

RESULTS

The benign/malignant ratio of MC was 66/41. Of 11/107 discordant results, DBT classified MCs as R2 whereas FFDM classified them as R3 in 9 and R4 in 2. Three of these (3/107 = 2.8%) were malignant; 8 (7.5%) were nonmalignant and were correctly classified as R2 on DBT but incorrectly classified as R3 on FFDM. Estimated sensitivity and specificity, respectively, were 100% (95% CI: 91% to 100%) and 94.6% (95% CI: 86.7% to 98.5%) for FFDM and 91.1% (95% CI: 78.8% to 97.5%) and 100% (95% CI: 94.8% to 100%) for DBT. Overall intra- and interobserver agreements were 0.75 (95% CI: 0.61-0.84) and 0.73 (95% CI: 0.62-0.78).

CONCLUSIONS

Most MCs are scored similarly on FFDM and DBT. Although a minority (11/107) of MCs are classified differently on FFDM (benign MC classified as R3) and DBT (malignant MC classified as R2), this may have clinical relevance.

KEY POINTS

• The BI-RADS classification of MC differs for FFDM and DBT in 11/107 cases • DBT assigned lower BI-RADS classes compared to FFDM in 11 clusters • In 4/107 DBT may have missed some malignant and high-risk lesions • In 7/107 the 'underclassification' on DBT was correct, potentially avoiding unnecessary biopsies • DBT may miss a small proportion of malignant lesions.

摘要

目的

比较 DBT 和 FFDM 在 BI-RADS 对微钙化簇(MC)分类中的作用。

方法

本研究经机构审查委员会批准,在三个中心进行。共对 107 个接受 DBT 和 FFDM 检查的 MC 进行随机分组,由 6 名经验丰富的乳腺放射科医生进行前瞻性阅读,并采用 BI-RADS 进行分类。

结果

MC 的良性/恶性比例为 66/41。在 11/107 个不一致的结果中,DBT 将 MC 分类为 R2,而 FFDM 将其分类为 R3 的有 9 个,R4 的有 2 个。这其中有 3 个(3/107=2.8%)为恶性;8 个(8/107=7.5%)为非恶性,在 DBT 上正确分类为 R2,但在 FFDM 上错误分类为 R3。FFDM 的估计敏感性和特异性分别为 100%(95%CI:91%-100%)和 94.6%(95%CI:86.7%-98.5%),DBT 分别为 91.1%(95%CI:78.8%-97.5%)和 100%(95%CI:94.8%-100%)。总的内部和观察者间一致性分别为 0.75(95%CI:0.61-0.84)和 0.73(95%CI:0.62-0.78)。

结论

大多数 MC 在 FFDM 和 DBT 上的评分相似。尽管少数(11/107)MC 在 FFDM(良性 MC 分类为 R3)和 DBT(恶性 MC 分类为 R2)上的分类不同,但这可能具有临床意义。

关键点

  1. 在 11/107 例 MC 中,FFDM 和 DBT 的 BI-RADS 分类不同。

  2. 与 FFDM 相比,DBT 为 11 个 MC 分配了较低的 BI-RADS 类别。

  3. 在 4/107 例中,DBT 可能遗漏了一些恶性和高危病变。

  4. 在 7/107 例中,DBT 的“低分类”是正确的,可能避免了不必要的活检。

  5. DBT 可能会遗漏一小部分恶性病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验