Suppr超能文献

在探索更有效的以患者为中心的癌症免疫治疗的过程中,体细胞突变肿瘤抗原。

Somatically mutated tumor antigens in the quest for a more efficacious patient-oriented immunotherapy of cancer.

机构信息

Biocenter, Division for Bioinformatics, Innsbruck Medical University, Innrain 80, 6020, Innsbruck, Austria.

出版信息

Cancer Immunol Immunother. 2015 Jan;64(1):99-104. doi: 10.1007/s00262-014-1599-7. Epub 2014 Aug 28.

Abstract

Although cancer immunotherapy shows efficacy with adoptive T cell therapy (ACT) and antibody-based immune checkpoint blockade, efficacious therapeutic vaccination of cancer patients with tumor-associated antigens (TAAs) remains largely unmet. Current cancer vaccines utilize nonmutated shared TAAs that may have suboptimal immunogenicity. Experimental evidence underscores the strong immunogenicity of unique TAAs derived from somatically mutated cancer proteins, whose massive characterization has been precluded until recently by technical limitations. The development of cost-effective, high-throughput DNA sequencing approaches makes now possible the rapid identification of all the somatic mutations contained in a cancer cell genome. This method, combined with robust bioinformatics platforms for T cell epitope prediction and established reverse immunology approaches, provides us with an integrated strategy to identify patient-specific unique TAAs in a relatively short time, compatible with their potential use in the clinic. Hence, it is now for the first time possible to quantitatively define the patient's unique tumor antigenome and exploit it for vaccination, possibly in combination with ACT and/or immune checkpoint blockade to further increase immunotherapy efficacy.

摘要

虽然癌症免疫疗法在过继性 T 细胞疗法 (ACT) 和抗体免疫检查点阻断方面显示出疗效,但用肿瘤相关抗原 (TAA) 对癌症患者进行有效的治疗性疫苗接种仍未得到满足。目前的癌症疫苗利用非突变的共享 TAA,其免疫原性可能不理想。实验证据强调了源自体细胞突变癌症蛋白的独特 TAA 的强免疫原性,直到最近,由于技术限制,这些独特 TAA 的大规模特征才得以确定。具有成本效益的高通量 DNA 测序方法的发展使得现在可以快速识别癌细胞基因组中包含的所有体细胞突变。该方法与用于 T 细胞表位预测的强大生物信息学平台和已建立的反向免疫学方法相结合,为我们提供了一种在相对较短的时间内识别患者特异性独特 TAA 的综合策略,这与它们在临床上的潜在用途兼容。因此,现在可以首次定量定义患者的独特肿瘤抗原组,并利用其进行疫苗接种,可能与 ACT 和/或免疫检查点阻断相结合,以进一步提高免疫治疗效果。

相似文献

1
Somatically mutated tumor antigens in the quest for a more efficacious patient-oriented immunotherapy of cancer.
Cancer Immunol Immunother. 2015 Jan;64(1):99-104. doi: 10.1007/s00262-014-1599-7. Epub 2014 Aug 28.
2
Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery.
Front Immunol. 2021 Jul 15;12:592031. doi: 10.3389/fimmu.2021.592031. eCollection 2021.
3
Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions.
Clin Cancer Res. 2014 Jul 1;20(13):3401-10. doi: 10.1158/1078-0432.CCR-14-0433.
4
Adoptive T-Cell Therapy for Cancer.
Adv Immunol. 2016;130:279-94. doi: 10.1016/bs.ai.2015.12.006. Epub 2016 Feb 3.
5
Advances in personalized neoantigen vaccines for cancer immunotherapy.
Biosci Trends. 2020 Nov 4;14(5):349-353. doi: 10.5582/bst.2020.03267. Epub 2020 Sep 10.
6
T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells.
Int Immunol. 2016 Jul;28(7):349-53. doi: 10.1093/intimm/dxw022. Epub 2016 Apr 28.
7
The Promise of Personalized TCR-Based Cellular Immunotherapy for Cancer Patients.
Front Immunol. 2021 Jul 30;12:701636. doi: 10.3389/fimmu.2021.701636. eCollection 2021.
8
Improving the efficacy and safety of engineered T cell therapy for cancer.
Cancer Lett. 2013 Jan 28;328(2):191-7. doi: 10.1016/j.canlet.2012.09.015. Epub 2012 Sep 27.
9
Mutanome directed cancer immunotherapy.
Curr Opin Immunol. 2016 Apr;39:14-22. doi: 10.1016/j.coi.2015.12.001. Epub 2015 Dec 21.
10
The present status and future prospects of peptide-based cancer vaccines.
Int Immunol. 2016 Jul;28(7):319-28. doi: 10.1093/intimm/dxw027. Epub 2016 May 28.

引用本文的文献

1
The use of RNA-based treatments in the field of cancer immunotherapy.
Mol Cancer. 2023 Jul 7;22(1):106. doi: 10.1186/s12943-023-01807-w.
2
IEDB and CEDAR: Two Sibling Databases to Serve the Global Scientific Community.
Methods Mol Biol. 2023;2673:133-149. doi: 10.1007/978-1-0716-3239-0_9.
3
SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery.
J Immunother Cancer. 2020 Dec;8(2). doi: 10.1136/jitc-2020-000705.
4
Immunogenicity of Del19 EGFR mutations in Chinese patients affected by lung adenocarcinoma.
BMC Immunol. 2019 Nov 13;20(1):43. doi: 10.1186/s12865-019-0320-1.
5
The role of cancer stem cells in the modulation of anti-tumor immune responses.
Semin Cancer Biol. 2018 Dec;53:189-200. doi: 10.1016/j.semcancer.2018.09.006. Epub 2018 Sep 24.
6
Immune Profiling of Cancer Patients Treated with Immunotherapy: Advances and Challenges.
Biomedicines. 2018 Jul 2;6(3):76. doi: 10.3390/biomedicines6030076.
7
Methods for improving the immunogenicity and efficacy of cancer vaccines.
Expert Opin Biol Ther. 2018 Jul;18(7):765-784. doi: 10.1080/14712598.2018.1485649. Epub 2018 Jun 17.
8
Immunological efficacy of glypican-3 peptide vaccine in patients with advanced hepatocellular carcinoma.
Oncoimmunology. 2017 Jul 11;6(10):e1346764. doi: 10.1080/2162402X.2017.1346764. eCollection 2017.
10
Tumor immunotherapy: drug-induced neoantigens (xenogenization) and immune checkpoint inhibitors.
Oncotarget. 2017 Jun 20;8(25):41641-41669. doi: 10.18632/oncotarget.16335.

本文引用的文献

1
HLA-binding properties of tumor neoepitopes in humans.
Cancer Immunol Res. 2014 Jun;2(6):522-9. doi: 10.1158/2326-6066.CIR-13-0227. Epub 2014 Mar 3.
2
Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia.
Blood. 2014 Jul 17;124(3):453-62. doi: 10.1182/blood-2014-04-567933. Epub 2014 Jun 2.
3
Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.
Science. 2014 May 9;344(6184):641-5. doi: 10.1126/science.1251102.
4
Shaping the repertoire of tumor-infiltrating effector and regulatory T cells.
Immunol Rev. 2014 May;259(1):245-58. doi: 10.1111/imr.12166.
5
Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy.
Nat Rev Cancer. 2014 Feb;14(2):135-46. doi: 10.1038/nrc3670.
6
Discovery and saturation analysis of cancer genes across 21 tumour types.
Nature. 2014 Jan 23;505(7484):495-501. doi: 10.1038/nature12912. Epub 2014 Jan 5.
8
Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.
Immunity. 2013 Oct 17;39(4):782-95. doi: 10.1016/j.immuni.2013.10.003.
9
Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma.
J Clin Oncol. 2013 Nov 10;31(32):e439-42. doi: 10.1200/JCO.2012.47.7521. Epub 2013 Sep 16.
10
Mutational heterogeneity in cancer and the search for new cancer-associated genes.
Nature. 2013 Jul 11;499(7457):214-218. doi: 10.1038/nature12213. Epub 2013 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验