Burgess Stephen, Davies Neil M, Thompson Simon G
From the aCardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; and bMedical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom.
Epidemiology. 2014 Nov;25(6):877-85. doi: 10.1097/EDE.0000000000000161.
Instrumental variable methods can estimate the causal effect of an exposure on an outcome using observational data. Many instrumental variable methods assume that the exposure-outcome relation is linear, but in practice this assumption is often in doubt, or perhaps the shape of the relation is a target for investigation. We investigate this issue in the context of Mendelian randomization, the use of genetic variants as instrumental variables.
Using simulations, we demonstrate the performance of a simple linear instrumental variable method when the true shape of the exposure-outcome relation is not linear. We also present a novel method for estimating the effect of the exposure on the outcome within strata of the exposure distribution. This enables the estimation of localized average causal effects within quantile groups of the exposure or as a continuous function of the exposure using a sliding window approach.
Our simulations suggest that linear instrumental variable estimates approximate a population-averaged causal effect. This is the average difference in the outcome if the exposure for every individual in the population is increased by a fixed amount. Estimates of localized average causal effects reveal the shape of the exposure-outcome relation for a variety of models. These methods are used to investigate the relations between body mass index and a range of cardiovascular risk factors.
Nonlinear exposure-outcome relations should not be a barrier to instrumental variable analyses. When the exposure-outcome relation is not linear, either a population-averaged causal effect or the shape of the exposure-outcome relation can be estimated.
工具变量法可利用观察性数据估计暴露因素对结局的因果效应。许多工具变量法假定暴露-结局关系呈线性,但在实际中这一假设常常存疑,或者该关系的形式可能正是研究的目标。我们在孟德尔随机化(即使用基因变异作为工具变量)的背景下研究这一问题。
通过模拟,我们展示了在暴露-结局关系的真实形式并非线性时,一种简单线性工具变量法的性能表现。我们还提出了一种新方法,用于估计暴露因素在暴露分布各分层内对结局的效应。这使得能够使用滑动窗口方法估计暴露因素分位数组内的局部平均因果效应,或将其作为暴露因素的连续函数进行估计。
我们的模拟表明,线性工具变量估计近似于总体平均因果效应。这是指如果人群中每个个体的暴露量都增加固定数量时,结局的平均差异。局部平均因果效应的估计揭示了各种模型的暴露-结局关系形式。这些方法被用于研究体重指数与一系列心血管危险因素之间的关系。
非线性暴露-结局关系不应成为工具变量分析的障碍。当暴露-结局关系不是线性时,可以估计总体平均因果效应或暴露-结局关系的形式。