Suppr超能文献

通过符号动力学检测动力系统的递归域。

Detecting recurrence domains of dynamical systems by symbolic dynamics.

作者信息

beim Graben Peter, Hutt Axel

机构信息

Department of German Language and Linguistics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany and Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10115 Berlin, Germany and Cortex Project, INRIA Nancy Grand Est, 54602 Villers-les-Nancy, France.

Cortex Project, INRIA Nancy Grand Est, 54602 Villers-les-Nancy, France.

出版信息

Phys Rev Lett. 2013 Apr 12;110(15):154101. doi: 10.1103/PhysRevLett.110.154101. Epub 2013 Apr 9.

Abstract

We propose an algorithm for the detection of recurrence domains of complex dynamical systems from time series. Our approach exploits the characteristic checkerboard texture of recurrence domains exhibited in recurrence plots. In phase space, recurrence plots yield intersecting balls around sampling points that could be merged into cells of a phase space partition. We construct this partition by a rewriting grammar applied to the symbolic dynamics of time indices. A maximum entropy principle defines the optimal size of intersecting balls. The final application to high-dimensional brain signals yields an optimal symbolic recurrence plot revealing functional components of the signal.

摘要

我们提出了一种从时间序列中检测复杂动力系统递归域的算法。我们的方法利用了递归图中呈现的递归域的特征棋盘纹理。在相空间中,递归图在采样点周围产生相交的球,这些球可以合并到相空间分区的单元中。我们通过应用于时间索引符号动力学的重写语法来构建这个分区。最大熵原理定义了相交球的最佳大小。最终应用于高维脑信号产生了一个最优的符号递归图,揭示了信号的功能成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验