Suppr超能文献

探索真菌萜类化合物组。

Traversing the fungal terpenome.

作者信息

Quin Maureen B, Flynn Christopher M, Schmidt-Dannert Claudia

机构信息

University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Avenue, St. Paul, MN 55108, USA.

出版信息

Nat Prod Rep. 2014 Oct;31(10):1449-73. doi: 10.1039/c4np00075g.

Abstract

Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids.

摘要

真菌(子囊菌门和担子菌门)是结构多样的萜类化合物的丰富生产者。在真菌中鉴定出的萜类化合物类别包括倍半萜、二萜和三萜。已经描述了从这些类别中的每一类产生萜类化合物的生物合成途径和酶。这些通常涉及产生萜烯合酶和环化酶的支架,以及支架修饰酶,例如细胞色素P450单加氧酶、NAD(P)+和黄素依赖性氧化还原酶,以及产生最终生物活性结构的各种基团转移酶。几种倍半萜类霉菌毒素和生物活性二萜的生物合成在子囊菌门(例如丝状真菌)中已经得到了充分研究。关于担子菌门(例如形成蘑菇的真菌)中的萜类生物合成途径知之甚少,尽管它们产生了种类繁多的萜类天然产物。具体而言,已经分离出许多具有强大生物活性的反式腐殖基阳离子衍生的倍半萜类天然产物。通过基因组测序和生物信息学方法可以快速鉴定负责产生反式腐殖基阳离子衍生的原伊鲁烷和其他倍半萜类化合物的生物合成基因簇。基因组挖掘与异源生物合成途径重构相结合有潜力促进药学相关真菌萜类化合物的发现和生产。

相似文献

1
Traversing the fungal terpenome.
Nat Prod Rep. 2014 Oct;31(10):1449-73. doi: 10.1039/c4np00075g.
2
Biosynthesis of fungal terpenoids.
Nat Prod Rep. 2024 May 22;41(5):748-783. doi: 10.1039/d3np00052d.
3
Exploration and mining of the bacterial terpenome.
Acc Chem Res. 2012 Mar 20;45(3):463-72. doi: 10.1021/ar200198d. Epub 2011 Oct 31.
5
Serves As a Gateway for Identifying Sesquiterpene Biosynthetic Enzymes in Higher Fungi.
ACS Chem Biol. 2020 May 15;15(5):1268-1277. doi: 10.1021/acschembio.0c00155. Epub 2020 Apr 7.
6
An extremely promiscuous terpenoid synthase from the Lamiaceae plant var. catalyzes the formation of sester-/di-/sesqui-/mono-terpenoids.
Plant Commun. 2021 Aug 12;2(5):100233. doi: 10.1016/j.xplc.2021.100233. eCollection 2021 Sep 13.
7
Discovery and characterization of terpenoid biosynthetic pathways of fungi.
Methods Enzymol. 2012;515:83-105. doi: 10.1016/B978-0-12-394290-6.00005-7.
8
In Vivo Platforms for Terpenoid Overproduction and the Generation of Chemical Diversity.
Methods Enzymol. 2018;608:97-129. doi: 10.1016/bs.mie.2018.04.025. Epub 2018 Jul 6.
9
Biosynthesis of terpenoid natural products in fungi.
Adv Biochem Eng Biotechnol. 2015;148:19-61. doi: 10.1007/10_2014_283.
10

引用本文的文献

1
The evolutionary history and modern diversity of triterpenoid cyclases.
bioRxiv. 2025 Aug 2:2024.10.28.620730. doi: 10.1101/2024.10.28.620730.
3
Crystal structure and catalytic mechanism of drimenol synthase, an unusual bifunctional terpene cyclase-phosphatase.
Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2506584122. doi: 10.1073/pnas.2506584122. Epub 2025 Jun 26.
4
Discovery of a plant-like tridomain bifunctional -abieta-7,13-diene synthase in .
Org Biomol Chem. 2025 Jun 13. doi: 10.1039/d5ob00724k.
6
Clade III Synthases Add Cyclic and Linear Terpenoids to the Psilocybe Metabolome.
Chembiochem. 2025 Jul 11;26(13):e202500167. doi: 10.1002/cbic.202500167. Epub 2025 Jun 4.
7
Characterization of the Cubamyces Menziesii Terpenome.
Chembiochem. 2025 Aug 22;26(15):e202401083. doi: 10.1002/cbic.202401083. Epub 2025 Apr 30.
8
Biochemistry and Chemoinformatics Guided Classification of Hirsutane Sesquiterpenes Isolated from Mushroom.
JACS Au. 2025 Jan 22;5(2):740-746. doi: 10.1021/jacsau.4c00983. eCollection 2025 Feb 24.
10

本文引用的文献

2
Rapid reconstitution of biosynthetic machinery for fungal metabolites in Aspergillus oryzae: total biosynthesis of aflatrem.
Chembiochem. 2014 Sep 22;15(14):2076-80. doi: 10.1002/cbic.201402195. Epub 2014 Aug 1.
3
A transcription factor FgSte12 is required for pathogenicity in Fusarium graminearum.
Mol Plant Pathol. 2015 Jan;16(1):1-13. doi: 10.1111/mpp.12155. Epub 2014 Jun 5.
4
Fungal metabolites with anticancer activity.
Nat Prod Rep. 2014 May;31(5):617-27. doi: 10.1039/c3np70078j. Epub 2014 Mar 20.
5
Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery.
Biotechnol Adv. 2014 Nov 1;32(6):1180-204. doi: 10.1016/j.biotechadv.2014.03.001. Epub 2014 Mar 17.
6
In silico tools for the analysis of antibiotic biosynthetic pathways.
Int J Med Microbiol. 2014 May;304(3-4):230-5. doi: 10.1016/j.ijmm.2014.02.001. Epub 2014 Feb 19.
7
Guanacastane diterpenoids from the plant endophytic fungus Cercospora sp.
J Nat Prod. 2014 Apr 25;77(4):873-81. doi: 10.1021/np4009688. Epub 2014 Feb 27.
8
To gibberellins and beyond! Surveying the evolution of (di)terpenoid metabolism.
Annu Rev Plant Biol. 2014;65:259-86. doi: 10.1146/annurev-arplant-050213-035705. Epub 2014 Jan 22.
9
Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment.
Toxins (Basel). 2013 Dec 19;6(1):1-19. doi: 10.3390/toxins6010001.
10
Hedycaryol synthase in complex with nerolidol reveals terpene cyclase mechanism.
Chembiochem. 2014 Jan 24;15(2):213-6. doi: 10.1002/cbic.201300708. Epub 2014 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验