Li Xu, Svedin Elisabeth, Mo Huaping, Atwell Susanna, Dilkes Brian P, Chapple Clint
Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907.
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907.
Genetics. 2014 Nov;198(3):1267-76. doi: 10.1534/genetics.114.168690. Epub 2014 Aug 29.
Plant secondary metabolism is an active research area because of the unique and important roles the specialized metabolites have in the interaction of plants with their biotic and abiotic environment, the diversity and complexity of the compounds and their importance to human medicine. Thousands of natural accessions of Arabidopsis thaliana characterized with increasing genomic precision are available, providing new opportunities to explore the biochemical and genetic mechanisms affecting variation in secondary metabolism within this model species. In this study, we focused on four aromatic metabolites that were differentially accumulated among 96 Arabidopsis natural accessions as revealed by leaf metabolic profiling. Using UV, mass spectrometry, and NMR data, we identified these four compounds as different dihydroxybenzoic acid (DHBA) glycosides, namely 2,5-dihydroxybenzoic acid (gentisic acid) 5-O-β-D-glucoside, 2,3-dihydroxybenzoic acid 3-O-β-D-glucoside, 2,5-dihydroxybenzoic acid 5-O-β-D-xyloside, and 2,3-dihydroxybenzoic acid 3-O-β-D-xyloside. Quantitative trait locus (QTL) mapping using recombinant inbred lines generated from C24 and Col-0 revealed a major-effect QTL controlling the relative proportion of xylosides vs. glucosides. Association mapping identified markers linked to a gene encoding a UDP glycosyltransferase gene. Analysis of Transfer DNA (T-DNA) knockout lines verified that this gene is required for DHBA xylosylation in planta and recombinant protein was able to xylosylate DHBA in vitro. This study demonstrates that exploiting natural variation of secondary metabolism is a powerful approach for gene function discovery.
由于植物次生代谢产物在植物与生物和非生物环境相互作用中具有独特且重要的作用、化合物的多样性和复杂性以及它们对人类医学的重要性,植物次生代谢是一个活跃的研究领域。目前有数千份基因组精度不断提高的拟南芥自然种质,为探索影响该模式物种次生代谢变异的生化和遗传机制提供了新机会。在本研究中,我们聚焦于96份拟南芥自然种质叶片代谢谱分析中差异积累的四种芳香族代谢产物。利用紫外、质谱和核磁共振数据,我们将这四种化合物鉴定为不同的二羟基苯甲酸(DHBA)糖苷,即2,5-二羟基苯甲酸(龙胆酸)5-O-β-D-葡萄糖苷、2,3-二羟基苯甲酸3-O-β-D-葡萄糖苷、2,5-二羟基苯甲酸5-O-β-D-木糖苷和2,3-二羟基苯甲酸3-O-β-D-木糖苷。利用由C24和Col-0构建的重组自交系进行数量性状位点(QTL)定位,发现了一个控制木糖苷与葡萄糖苷相对比例的主效QTL。关联分析鉴定出与一个编码UDP糖基转移酶基因的标记。对转移DNA(T-DNA)敲除系的分析证实,该基因是植物中DHBA木糖基化所必需的,并且重组蛋白能够在体外使DHBA木糖基化。本研究表明,利用次生代谢的自然变异是发现基因功能的一种有效方法。