Suppr超能文献

利用次生代谢的自然变异鉴定出一个控制拟南芥中二羟基苯甲酸糖基化多样性的基因。

Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids in Arabidopsis thaliana.

作者信息

Li Xu, Svedin Elisabeth, Mo Huaping, Atwell Susanna, Dilkes Brian P, Chapple Clint

机构信息

Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907.

Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907.

出版信息

Genetics. 2014 Nov;198(3):1267-76. doi: 10.1534/genetics.114.168690. Epub 2014 Aug 29.

Abstract

Plant secondary metabolism is an active research area because of the unique and important roles the specialized metabolites have in the interaction of plants with their biotic and abiotic environment, the diversity and complexity of the compounds and their importance to human medicine. Thousands of natural accessions of Arabidopsis thaliana characterized with increasing genomic precision are available, providing new opportunities to explore the biochemical and genetic mechanisms affecting variation in secondary metabolism within this model species. In this study, we focused on four aromatic metabolites that were differentially accumulated among 96 Arabidopsis natural accessions as revealed by leaf metabolic profiling. Using UV, mass spectrometry, and NMR data, we identified these four compounds as different dihydroxybenzoic acid (DHBA) glycosides, namely 2,5-dihydroxybenzoic acid (gentisic acid) 5-O-β-D-glucoside, 2,3-dihydroxybenzoic acid 3-O-β-D-glucoside, 2,5-dihydroxybenzoic acid 5-O-β-D-xyloside, and 2,3-dihydroxybenzoic acid 3-O-β-D-xyloside. Quantitative trait locus (QTL) mapping using recombinant inbred lines generated from C24 and Col-0 revealed a major-effect QTL controlling the relative proportion of xylosides vs. glucosides. Association mapping identified markers linked to a gene encoding a UDP glycosyltransferase gene. Analysis of Transfer DNA (T-DNA) knockout lines verified that this gene is required for DHBA xylosylation in planta and recombinant protein was able to xylosylate DHBA in vitro. This study demonstrates that exploiting natural variation of secondary metabolism is a powerful approach for gene function discovery.

摘要

由于植物次生代谢产物在植物与生物和非生物环境相互作用中具有独特且重要的作用、化合物的多样性和复杂性以及它们对人类医学的重要性,植物次生代谢是一个活跃的研究领域。目前有数千份基因组精度不断提高的拟南芥自然种质,为探索影响该模式物种次生代谢变异的生化和遗传机制提供了新机会。在本研究中,我们聚焦于96份拟南芥自然种质叶片代谢谱分析中差异积累的四种芳香族代谢产物。利用紫外、质谱和核磁共振数据,我们将这四种化合物鉴定为不同的二羟基苯甲酸(DHBA)糖苷,即2,5-二羟基苯甲酸(龙胆酸)5-O-β-D-葡萄糖苷、2,3-二羟基苯甲酸3-O-β-D-葡萄糖苷、2,5-二羟基苯甲酸5-O-β-D-木糖苷和2,3-二羟基苯甲酸3-O-β-D-木糖苷。利用由C24和Col-0构建的重组自交系进行数量性状位点(QTL)定位,发现了一个控制木糖苷与葡萄糖苷相对比例的主效QTL。关联分析鉴定出与一个编码UDP糖基转移酶基因的标记。对转移DNA(T-DNA)敲除系的分析证实,该基因是植物中DHBA木糖基化所必需的,并且重组蛋白能够在体外使DHBA木糖基化。本研究表明,利用次生代谢的自然变异是发现基因功能的一种有效方法。

相似文献

3
Modulation of Plant Salicylic Acid-Associated Immune Responses via Glycosylation of Dihydroxybenzoic Acids.
Plant Physiol. 2018 Apr;176(4):3103-3119. doi: 10.1104/pp.17.01530. Epub 2018 Feb 26.
5
Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14807-12. doi: 10.1073/pnas.1302702110. Epub 2013 Aug 19.
6
Identification of QTLs affecting scopolin and scopoletin biosynthesis in Arabidopsis thaliana.
BMC Plant Biol. 2014 Oct 18;14:280. doi: 10.1186/s12870-014-0280-9.
7
Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6.
J Exp Bot. 2016 Mar;67(5):1505-17. doi: 10.1093/jxb/erv546. Epub 2015 Dec 29.
8
Discovery of a novel amino acid racemase through exploration of natural variation in Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11726-31. doi: 10.1073/pnas.1503272112. Epub 2015 Aug 31.
9
Genome-wide association studies identify loci controlling specialized seed metabolites in Arabidopsis.
Plant Physiol. 2024 Feb 29;194(3):1705-1721. doi: 10.1093/plphys/kiad511.
10
Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations.
Plant J. 2008 Mar;53(6):960-72. doi: 10.1111/j.1365-313X.2007.03383.x. Epub 2007 Nov 28.

引用本文的文献

1
Altering cold-regulated gene expression decouples the salicylic acid-growth trade-off in Arabidopsis.
Plant Cell. 2024 Oct 3;36(10):4293-4308. doi: 10.1093/plcell/koae210.
3
Genome-wide association studies identify loci controlling specialized seed metabolites in Arabidopsis.
Plant Physiol. 2024 Feb 29;194(3):1705-1721. doi: 10.1093/plphys/kiad511.
4
QT-GWAS: A novel method for unveiling biosynthetic loci affecting qualitative metabolic traits.
Mol Plant. 2023 Jul 3;16(7):1212-1227. doi: 10.1016/j.molp.2023.06.004. Epub 2023 Jun 21.
5
SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato.
BMC Plant Biol. 2022 Nov 29;22(1):549. doi: 10.1186/s12870-022-03939-5.
6
Salicylic Acid Is Required for Broad-Spectrum Disease Resistance in Rice.
Int J Mol Sci. 2022 Jan 25;23(3):1354. doi: 10.3390/ijms23031354.
8
Identifying genetic variants underlying phenotypic variation in plants without complete genomes.
Nat Genet. 2020 May;52(5):534-540. doi: 10.1038/s41588-020-0612-7. Epub 2020 Apr 13.
9
Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus.
BMC Plant Biol. 2019 Oct 26;19(1):450. doi: 10.1186/s12870-019-2063-9.
10
A genetical metabolomics approach for bioprospecting plant biosynthetic gene clusters.
BMC Res Notes. 2019 Apr 2;12(1):194. doi: 10.1186/s13104-019-4222-3.

本文引用的文献

1
Frequency-dependent selection in a wild plant-pathogen system.
Oecologia. 1995 Jun;102(4):490-493. doi: 10.1007/BF00341361.
2
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
3
Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14807-12. doi: 10.1073/pnas.1302702110. Epub 2013 Aug 19.
4
The advantages and limitations of trait analysis with GWAS: a review.
Plant Methods. 2013 Jul 22;9:29. doi: 10.1186/1746-4811-9-29. eCollection 2013.
5
Elemental profiles reflect plant adaptations to the environment.
Science. 2012 Jun 29;336(6089):1661-3. doi: 10.1126/science.1219992.
6
Hybrid incompatibility in Arabidopsis is determined by a multiple-locus genetic network.
Plant Physiol. 2012 Feb;158(2):801-12. doi: 10.1104/pp.111.188706. Epub 2011 Dec 1.
7
Whole-genome sequencing of multiple Arabidopsis thaliana populations.
Nat Genet. 2011 Aug 28;43(10):956-63. doi: 10.1038/ng.911.
8
Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21199-204. doi: 10.1073/pnas.1007431107. Epub 2010 Nov 15.
9
R/qtl: high-throughput multiple QTL mapping.
Bioinformatics. 2010 Dec 1;26(23):2990-2. doi: 10.1093/bioinformatics/btq565. Epub 2010 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验