Barardi Alessandro, Malagarriga Daniel, Sancristobal Belén, Garcia-Ojalvo Jordi, Pons Antonio J
Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Dr. Aiguader 88, 08003 Barcelona, Spain Departament de Fìsica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Edifici Gaia, Rambla Sant Nebridi 22, 08222 Terrassa, Spain.
Departament de Fìsica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Edifici Gaia, Rambla Sant Nebridi 22, 08222 Terrassa, Spain Neuroheuristic Research Group, Faculty of Business and Economics, University of Lausanne, 1015 Lausanne, Switzerland.
Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653). doi: 10.1098/rstb.2013.0533.
The mammalian brain operates in multiple spatial scales simultaneously, ranging from the microscopic scale of single neurons through the mesoscopic scale of cortical columns, to the macroscopic scale of brain areas. These levels of description are associated with distinct temporal scales, ranging from milliseconds in the case of neurons to tens of seconds in the case of brain areas. Here, we examine theoretically how these spatial and temporal scales interact in the functioning brain, by considering the coupled behaviour of two mesoscopic neural masses (NMs) that communicate with each other through a microscopic neuronal network (NN). We use the synchronization between the two NM models as a tool to probe the interaction between the mesoscopic scales of those neural populations and the microscopic scale of the mediating NN. The two NM oscillators are taken to operate in a low-frequency regime with different peak frequencies (and distinct dynamical behaviour). The microscopic neuronal population, in turn, is described by a network of several thousand excitatory and inhibitory spiking neurons operating in a synchronous irregular regime, in which the individual neurons fire very sparsely but collectively give rise to a well-defined rhythm in the gamma range. Our results show that this NN, which operates at a fast temporal scale, is indeed sufficient to mediate coupling between the two mesoscopic oscillators, which evolve dynamically at a slower scale. We also establish how this synchronization depends on the topological properties of the microscopic NN, on its size and on its oscillation frequency.
哺乳动物的大脑同时在多个空间尺度上运作,从单个神经元的微观尺度到皮层柱的介观尺度,再到脑区的宏观尺度。这些描述层次与不同的时间尺度相关联,从神经元的毫秒级到脑区的数十秒级。在这里,我们通过考虑两个通过微观神经元网络(NN)相互通信的介观神经团(NM)的耦合行为,从理论上研究这些空间和时间尺度在功能正常的大脑中是如何相互作用的。我们将两个NM模型之间的同步作为一种工具,来探究这些神经群体的介观尺度与介导的NN的微观尺度之间的相互作用。两个NM振荡器被设定在具有不同峰值频率(以及不同动力学行为)的低频状态下运行。反过来,微观神经元群体由一个由数千个兴奋性和抑制性脉冲神经元组成的网络来描述,该网络在同步不规则状态下运行,其中单个神经元放电非常稀疏,但集体产生一个明确的伽马范围内的节律。我们的结果表明,这个在快速时间尺度上运行的NN确实足以介导两个在较慢尺度上动态演化的介观振荡器之间的耦合。我们还确定了这种同步如何取决于微观NN的拓扑特性、其大小及其振荡频率。