Suppr超能文献

使用神经质量模型对大脑共振现象进行建模。

Modeling brain resonance phenomena using a neural mass model.

机构信息

Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

出版信息

PLoS Comput Biol. 2011 Dec;7(12):e1002298. doi: 10.1371/journal.pcbi.1002298. Epub 2011 Dec 22.

Abstract

Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect.

摘要

节律性光闪烁刺激(光刺激)在精神分裂症、情绪障碍、偏头痛和癫痫的诊断中起着重要作用。特别是,自发脑节律对刺激频率的调整(同步)用于评估大脑的功能灵活性。我们旨在更深入地了解该技术背后的机制,并预测刺激频率和强度的影响。为此,我们使用了皮质电路的改良 Jansen 和 Rit 神经质量模型(NMM)。这个平均场模型旨在在数学简单性和生物学合理性之间取得平衡。我们再现了在光刺激实验中 EEG 中观察到的同步现象。更一般地说,我们证明,对于生物学上合理的参数范围,这样的单个区域模型可以产生非常复杂的动力学,包括混沌。我们通过特征 Lyapunov 谱和 Kaplan-Yorke 维数以及时间序列和功率谱来绘制整个参数空间。节律和混沌的脑状态几乎相邻,因此微小的参数变化可能导致从一种状态切换到另一种状态。引人注目的是,模型产生的这种不可预测性的特征模式与实验数据非常吻合。这些发现证实了 NMM 是光刺激期间大脑动力学的有用模型。在这种情况下,它可用于研究感知和癫痫发作产生等机制。特别是,它使我们能够对进一步实验中的刺激幅度进行预测,以提高同步效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cd7/3245303/4bff2e3d8f10/pcbi.1002298.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验