Department of Biochemistry, Federal University of Rio Grande do Sul , 90035-003 Porto Alegre, RS Brazil.
ACS Chem Neurosci. 2014 Oct 15;5(10):1041-54. doi: 10.1021/cn500111e. Epub 2014 Sep 18.
As the dopamine D3R receptor is a promising target for schizophrenia treatment, an improved understanding of the binding of existing antipsychotics to this receptor is crucial for the development of new potent and more selective therapeutic agents. In this work, we have used X-ray cocrystallization data of the antagonist eticlopride bound to D3R as a template to predict, through docking essays, the placement of the typical antipsychotic drug haloperidol at the D3R receptor binding site. Afterward, classical and quantum mechanics/molecular mechanics (QM/MM) computations were employed to improve the quality of the docking calculations, with the QM part of the simulations being accomplished by using the density functional theory (DFT) formalism. After docking, the calculated QM improved total interaction energy EQMDI = -170.1 kcal/mol was larger (in absolute value) than that obtained with classical molecular mechanics improved (ECLDI = -156.3 kcal/mol) and crude docking (ECRDI = -137.6 kcal/mol) procedures. The QM/MM computations reveal the pivotal role of the Asp110 amino acid residue in the D3R haloperidol binding, followed by Tyr365, Phe345, Ile183, Phe346, Tyr373, and Cys114. Besides, it highlights the relevance of the haloperidol hydroxyl group axial orientation, which interacts with the Tyr365 and Thr369 residues, enhancing its binding to dopamine receptors. Finally, our computations indicate that functional substitutions in the 4-clorophenyl and in the 4-hydroxypiperidin-1-yl fragments (such as C3H and C12H hydrogen replacement by OH or COOH) can lead to haloperidol derivatives with distinct dopamine antagonism profiles. The results of our work are a first step using in silico quantum biochemical design as means to impact the discovery of new medicines to treat schizophrenia.
由于多巴胺 D3R 受体是治疗精神分裂症的一个有希望的靶点,因此深入了解现有抗精神病药物与该受体的结合对于开发新的有效且更具选择性的治疗药物至关重要。在这项工作中,我们使用了与 D3R 结合的拮抗剂依替必利的 X 射线共晶数据作为模板,通过对接研究预测典型抗精神病药物氟哌啶醇在 D3R 受体结合位点的位置。之后,采用经典力学和量子力学/分子力学(QM/MM)计算来提高对接计算的质量,其中模拟的 QM 部分使用密度泛函理论(DFT)形式完成。对接后,计算出的 QM 改进后的总相互作用能 EQMDI = -170.1 kcal/mol 比经典分子力学改进后的(ECLDI = -156.3 kcal/mol)和原始对接(ECRDI = -137.6 kcal/mol)更大(绝对值更大)。QM/MM 计算揭示了 Asp110 氨基酸残基在 D3R 氟哌啶醇结合中的关键作用,其次是 Tyr365、Phe345、Ile183、Phe346、Tyr373 和 Cys114。此外,它强调了氟哌啶醇羟基轴向取向的重要性,它与 Tyr365 和 Thr369 残基相互作用,增强了其与多巴胺受体的结合。最后,我们的计算表明,在 4-氯苯基和 4-羟基哌啶-1-基片段(如 C3H 和 C12H 氢被 OH 或 COOH 取代)中的功能取代可以导致具有不同多巴胺拮抗作用的氟哌啶醇衍生物。我们的工作结果是使用计算机量子生化设计作为手段来影响治疗精神分裂症新药发现的第一步。