Suppr超能文献

用于CRISPR-Cas9介导的基因失活的高活性sgRNA的合理设计。

Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation.

作者信息

Doench John G, Hartenian Ella, Graham Daniel B, Tothova Zuzana, Hegde Mudra, Smith Ian, Sullender Meagan, Ebert Benjamin L, Xavier Ramnik J, Root David E

机构信息

1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2].

Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.

出版信息

Nat Biotechnol. 2014 Dec;32(12):1262-7. doi: 10.1038/nbt.3026. Epub 2014 Sep 3.

Abstract

Components of the prokaryotic clustered, regularly interspaced, short palindromic repeats (CRISPR) loci have recently been repurposed for use in mammalian cells. The CRISPR-associated (Cas)9 can be programmed with a single guide RNA (sgRNA) to generate site-specific DNA breaks, but there are few known rules governing on-target efficacy of this system. We created a pool of sgRNAs, tiling across all possible target sites of a panel of six endogenous mouse and three endogenous human genes and quantitatively assessed their ability to produce null alleles of their target gene by antibody staining and flow cytometry. We discovered sequence features that improved activity, including a further optimization of the protospacer-adjacent motif (PAM) of Streptococcus pyogenes Cas9. The results from 1,841 sgRNAs were used to construct a predictive model of sgRNA activity to improve sgRNA design for gene editing and genetic screens. We provide an online tool for the design of highly active sgRNAs for any gene of interest.

摘要

原核生物成簇的、规律间隔的短回文重复序列(CRISPR)位点的组成部分最近已被重新用于哺乳动物细胞。与CRISPR相关的(Cas)9蛋白可通过单个导向RNA(sgRNA)进行编程,以产生位点特异性DNA断裂,但关于该系统的靶向效率,已知的规则很少。我们创建了一组sgRNA,覆盖六个内源性小鼠基因和三个内源性人类基因的所有可能靶位点,并通过抗体染色和流式细胞术定量评估了它们产生靶基因无效等位基因的能力。我们发现了能提高活性的序列特征,包括对化脓性链球菌Cas9的原间隔序列临近基序(PAM)的进一步优化。1841个sgRNA的结果被用于构建sgRNA活性预测模型,以改进用于基因编辑和遗传筛选的sgRNA设计。我们提供了一个在线工具,用于设计针对任何感兴趣基因的高活性sgRNA。

相似文献

1
Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation.
Nat Biotechnol. 2014 Dec;32(12):1262-7. doi: 10.1038/nbt.3026. Epub 2014 Sep 3.
2
Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
Plant Biotechnol J. 2018 Jan;16(1):292-297. doi: 10.1111/pbi.12771. Epub 2017 Aug 5.
4
Increasing the specificity of CRISPR systems with engineered RNA secondary structures.
Nat Biotechnol. 2019 Jun;37(6):657-666. doi: 10.1038/s41587-019-0095-1. Epub 2019 Apr 15.
5
SpRY: Engineered CRISPR/Cas9 Harnesses New Genome-Editing Power.
Trends Genet. 2020 Aug;36(8):546-548. doi: 10.1016/j.tig.2020.05.001. Epub 2020 May 23.
6
Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency.
Sci Rep. 2016 Jun 24;6:28566. doi: 10.1038/srep28566.
8
Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting.
FEBS J. 2014 Apr;281(7):1717-25. doi: 10.1111/febs.12735. Epub 2014 Feb 26.
10
Genome editing by miniature CRISPR/Cas12f1 enzyme in Escherichia coli.
J Biosci Bioeng. 2021 Aug;132(2):120-124. doi: 10.1016/j.jbiosc.2021.04.009. Epub 2021 May 19.

引用本文的文献

5
Morphological map of under- and overexpression of genes in human cells.
Nat Methods. 2025 Aug;22(8):1742-1752. doi: 10.1038/s41592-025-02753-9. Epub 2025 Aug 7.
6
Gene editing and CRISPR-dependent homology-mediated end joining.
Exp Mol Med. 2025 Jul;57(7):1409-1418. doi: 10.1038/s12276-025-01442-z. Epub 2025 Jul 31.
7
Revolutionizing CRISPR technology with artificial intelligence.
Exp Mol Med. 2025 Jul;57(7):1419-1431. doi: 10.1038/s12276-025-01462-9. Epub 2025 Jul 31.
8
Synthetic guide sequence to generate CRISPR-Cas9 entry strains in .
MicroPubl Biol. 2025 Jul 11;2025. doi: 10.17912/micropub.biology.001694. eCollection 2025.
9
CRISPR-Cas9 and Its Bioinformatics Tools: A Systematic Review.
Curr Issues Mol Biol. 2025 Apr 27;47(5):307. doi: 10.3390/cimb47050307.
10
Off-target interactions in the CRISPR-Cas9 Machinery: mechanisms and outcomes.
Biochem Biophys Rep. 2025 Jul 5;43:102134. doi: 10.1016/j.bbrep.2025.102134. eCollection 2025 Sep.

本文引用的文献

1
Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs.
PLoS One. 2014 May 29;9(5):e98186. doi: 10.1371/journal.pone.0098186. eCollection 2014.
2
Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.
Nat Biotechnol. 2014 Jul;32(7):677-83. doi: 10.1038/nbt.2916. Epub 2014 May 18.
3
Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells.
Nat Biotechnol. 2014 Jul;32(7):670-6. doi: 10.1038/nbt.2889. Epub 2014 Apr 20.
4
High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.
Nature. 2014 May 22;509(7501):487-91. doi: 10.1038/nature13166. Epub 2014 Apr 9.
5
Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
Nat Biotechnol. 2014 Mar;32(3):267-73. doi: 10.1038/nbt.2800. Epub 2013 Dec 23.
6
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
Nat Biotechnol. 2014 Mar;32(3):279-284. doi: 10.1038/nbt.2808. Epub 2014 Jan 26.
7
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Science. 2014 Jan 3;343(6166):84-87. doi: 10.1126/science.1247005. Epub 2013 Dec 12.
8
Genetic screens in human cells using the CRISPR-Cas9 system.
Science. 2014 Jan 3;343(6166):80-4. doi: 10.1126/science.1246981. Epub 2013 Dec 12.
9
Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
Genome Res. 2014 Jan;24(1):132-41. doi: 10.1101/gr.162339.113. Epub 2013 Nov 19.
10
One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering.
Cell. 2013 Sep 12;154(6):1370-9. doi: 10.1016/j.cell.2013.08.022. Epub 2013 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验