Suppr超能文献

论病毒在细胞群体中的传播规律。

On the laws of virus spread through cell populations.

作者信息

Wodarz Dominik, Chan Chi N, Trinité Benjamin, Komarova Natalia L, Levy David N

机构信息

Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA Department of Mathematics, University of California, Irvine, California, USA.

Department of Basic Science, New York University College of Dentistry, New York, New York, USA.

出版信息

J Virol. 2014 Nov;88(22):13240-8. doi: 10.1128/JVI.02096-14. Epub 2014 Sep 3.

Abstract

UNLABELLED

The dynamics of viral infections have been investigated extensively, often with a combination of experimental and mathematical approaches. Mathematical descriptions of virus spread through cell populations are well established in the literature and have yielded important insights, yet the formulation of certain fundamental aspects of virus dynamics models remains uncertain and untested. Here, we investigate the process of infection and, in particular, the effect of varying the target cell population size on the number of productively infected cells generated. Using an in vitro single-round HIV-1 infection system, we find that the established modeling framework cannot accurately fit the data. If the model is fit to data with the lowest number of cells and is used to predict data generated with larger cell populations, the model significantly overestimates the number of productively infected cells generated. Interestingly, this deviation becomes stronger under experimental conditions that promote mixing of cells and viruses. The reason for the deviation is that the standard model makes certain oversimplifying assumptions about the fate of viruses that fail to find a cell in their immediate proximity. We derive from stochastic processes a different model that assumes simultaneous access of the virus to multiple target cells. In this scenario, if no cell is available to the virus at its location, it has a chance to interact with other cells, a process that can be promoted by mixing of the populations. This model can accurately fit the experimental data and suggests a new interpretation of mass action in virus dynamics models.

IMPORTANCE

Understanding the principles of virus growth through cell populations is of fundamental importance to virology. It helps us make informed decisions about intervention strategies aimed at preventing virus growth, such as drug treatment or vaccination approaches, e.g., in HIV infection, yet considerable uncertainty remains in this respect. An important variable in this context is the number of susceptible cells available for virus replication. How does the number of susceptible cells influence the growth potential of the virus? Besides the importance of such information for clinical responses, a thorough understanding of this is also important for the prediction of virus levels in patients and the estimation of crucial patient parameters through the use of mathematical models. This paper investigates the relationship between target cell availability and the virus growth potential with a combination of experimental and mathematical approaches and provides significant new insights.

摘要

未标注

病毒感染的动态过程已得到广泛研究,通常采用实验和数学方法相结合的方式。病毒在细胞群体中传播的数学描述在文献中已得到充分确立,并产生了重要见解,但病毒动力学模型某些基本方面的公式化仍不确定且未经检验。在此,我们研究感染过程,特别是改变靶细胞群体大小对产生的有效感染细胞数量的影响。使用体外单轮HIV - 1感染系统,我们发现已建立的建模框架无法准确拟合数据。如果该模型拟合细胞数量最少的数据并用于预测由更大细胞群体产生的数据,该模型会显著高估产生的有效感染细胞数量。有趣的是,在促进细胞和病毒混合的实验条件下,这种偏差会变得更强。偏差的原因是标准模型对未能在其紧邻区域找到细胞的病毒命运做出了某些过度简化的假设。我们从随机过程中推导了一个不同的模型,该模型假设病毒可同时接触多个靶细胞。在这种情况下,如果病毒所在位置没有细胞可供其利用,它就有机会与其他细胞相互作用,群体混合可促进这一过程。该模型能够准确拟合实验数据,并为病毒动力学模型中的质量作用提出了新的解释。

重要性

理解病毒在细胞群体中的生长原理对病毒学至关重要。它有助于我们就旨在阻止病毒生长的干预策略做出明智决策,例如药物治疗或疫苗接种方法,例如在HIV感染中,但在这方面仍存在相当大的不确定性。在此背景下一个重要变量是可用于病毒复制的易感细胞数量。易感细胞数量如何影响病毒的生长潜力?除了此类信息对临床反应的重要性外,透彻理解这一点对于预测患者体内病毒水平以及通过使用数学模型估计关键患者参数也很重要。本文结合实验和数学方法研究了靶细胞可用性与病毒生长潜力之间的关系,并提供了重要的新见解。

相似文献

1
On the laws of virus spread through cell populations.
J Virol. 2014 Nov;88(22):13240-8. doi: 10.1128/JVI.02096-14. Epub 2014 Sep 3.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Relative contribution of free-virus and synaptic transmission to the spread of HIV-1 through target cell populations.
Biol Lett. 2012 Dec 26;9(1):20121049. doi: 10.1098/rsbl.2012.1049. Print 2013 Feb 23.
5
Notwithstanding Circumstantial Alibis, Cytotoxic T Cells Can Be Major Killers of HIV-1-Infected Cells.
J Virol. 2016 Jul 27;90(16):7066-7083. doi: 10.1128/JVI.00306-16. Print 2016 Aug 15.
6
Simple mathematical models do not accurately predict early SIV dynamics.
Viruses. 2015 Mar 13;7(3):1189-217. doi: 10.3390/v7031189.
7
Cell-to-cell infection by HIV contributes over half of virus infection.
Elife. 2015 Oct 6;4:e08150. doi: 10.7554/eLife.08150.
9
Increased burst size in multiply infected cells can alter basic virus dynamics.
Biol Direct. 2012 May 8;7:16. doi: 10.1186/1745-6150-7-16.
10
Virion-Associated Vpr Alleviates a Postintegration Block to HIV-1 Infection of Dendritic Cells.
J Virol. 2017 Jun 9;91(13). doi: 10.1128/JVI.00051-17. Print 2017 Jul 1.

引用本文的文献

1
Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions.
Results Probl Cell Differ. 2024;71:345-370. doi: 10.1007/978-3-031-37936-9_17.
2
HIV Preintegration Transcription and Host Antagonism.
Curr HIV Res. 2023;21(3):160-171. doi: 10.2174/1570162X21666230621122637.
3
In vitro and in silico multidimensional modeling of oncolytic tumor virotherapy dynamics.
PLoS Comput Biol. 2019 Mar 5;15(3):e1006773. doi: 10.1371/journal.pcbi.1006773. eCollection 2019 Mar.
4
Tat controls transcriptional persistence of unintegrated HIV genome in primary human macrophages.
Virology. 2018 May;518:241-252. doi: 10.1016/j.virol.2018.03.006. Epub 2018 Mar 15.
5
Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach.
PLoS One. 2017 Sep 21;12(9):e0184347. doi: 10.1371/journal.pone.0184347. eCollection 2017.
6
Fighting Cancer with Mathematics and Viruses.
Viruses. 2017 Aug 23;9(9):239. doi: 10.3390/v9090239.
7
Computational modeling approaches to the dynamics of oncolytic viruses.
Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):242-52. doi: 10.1002/wsbm.1332. Epub 2016 Mar 22.

本文引用的文献

1
An HIV-1 replication pathway utilizing reverse transcription products that fail to integrate.
J Virol. 2013 Dec;87(23):12701-20. doi: 10.1128/JVI.01939-13. Epub 2013 Sep 18.
2
Modeling the within-host dynamics of HIV infection.
BMC Biol. 2013 Sep 3;11:96. doi: 10.1186/1741-7007-11-96.
3
Relative contribution of free-virus and synaptic transmission to the spread of HIV-1 through target cell populations.
Biol Lett. 2012 Dec 26;9(1):20121049. doi: 10.1098/rsbl.2012.1049. Print 2013 Feb 23.
4
A perspective on modelling hepatitis C virus infection.
J Viral Hepat. 2010 Dec;17(12):825-33. doi: 10.1111/j.1365-2893.2010.01348.x. Epub 2010 Aug 15.
5
ODE models for oncolytic virus dynamics.
J Theor Biol. 2010 Apr 21;263(4):530-43. doi: 10.1016/j.jtbi.2010.01.009. Epub 2010 Jan 18.
6
Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood.
Bioinformatics. 2009 Aug 1;25(15):1923-9. doi: 10.1093/bioinformatics/btp358. Epub 2009 Jun 8.
7
A mathematical model of hepatitis C virus dynamics in patients with high baseline viral loads or advanced liver disease.
Gastroenterology. 2009 Apr;136(4):1402-9. doi: 10.1053/j.gastro.2008.12.060. Epub 2009 Jan 1.
9
Dynamics of immune escape during HIV/SIV infection.
PLoS Comput Biol. 2008 Jul 18;4(7):e1000103. doi: 10.1371/journal.pcbi.1000103.
10
Viral complementation allows HIV-1 replication without integration.
Retrovirology. 2008 Jul 9;5:60. doi: 10.1186/1742-4690-5-60.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验