Suppr超能文献

溶瘤病毒动力学的计算建模方法。

Computational modeling approaches to the dynamics of oncolytic viruses.

作者信息

Wodarz Dominik

机构信息

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA.

Department of Mathematics, University of California, Irvine, CA, USA.

出版信息

Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):242-52. doi: 10.1002/wsbm.1332. Epub 2016 Mar 22.

Abstract

Replicating oncolytic viruses represent a promising treatment approach against cancer, specifically targeting the tumor cells. Significant progress has been made through experimental and clinical studies. Besides these approaches, however, mathematical models can be useful when analyzing the dynamics of virus spread through tumors, because the interactions between a growing tumor and a replicating virus are complex and nonlinear, making them difficult to understand by experimentation alone. Mathematical models have provided significant biological insight into the field of virus dynamics, and similar approaches can be adopted to study oncolytic viruses. The review discusses this approach and highlights some of the challenges that need to be overcome in order to build mathematical and computation models that are clinically predictive. WIREs Syst Biol Med 2016, 8:242-252. doi: 10.1002/wsbm.1332 For further resources related to this article, please visit the WIREs website.

摘要

复制型溶瘤病毒是一种很有前景的癌症治疗方法,专门针对肿瘤细胞。通过实验和临床研究已取得了重大进展。然而,除了这些方法之外,在分析病毒在肿瘤中传播的动态时,数学模型可能会很有用,因为不断生长的肿瘤与复制型病毒之间的相互作用是复杂且非线性的,仅通过实验很难理解。数学模型为病毒动力学领域提供了重要的生物学见解,并且可以采用类似方法来研究溶瘤病毒。本文综述讨论了这种方法,并强调了为构建具有临床预测性的数学和计算模型而需要克服的一些挑战。《WIREs系统生物学与医学》2016年,8卷:242 - 252页。doi: 10.1002/wsbm.1332 有关本文的更多资源,请访问WIREs网站。

相似文献

1
Computational modeling approaches to the dynamics of oncolytic viruses.溶瘤病毒动力学的计算建模方法。
Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):242-52. doi: 10.1002/wsbm.1332. Epub 2016 Mar 22.
3
ODE models for oncolytic virus dynamics.溶瘤病毒动力学的 ODE 模型。
J Theor Biol. 2010 Apr 21;263(4):530-43. doi: 10.1016/j.jtbi.2010.01.009. Epub 2010 Jan 18.
9
In silico evolutionary dynamics of tumour virotherapy.肿瘤病毒疗法的计算进化动力学。
Integr Biol (Camb). 2010 Jan;2(1):41-5. doi: 10.1039/b917597k. Epub 2009 Oct 14.

引用本文的文献

3
Applications of Intravital Imaging in Cancer Immunotherapy.活体成像在癌症免疫治疗中的应用
Bioengineering (Basel). 2024 Mar 8;11(3):264. doi: 10.3390/bioengineering11030264.
8
Fighting Cancer with Mathematics and Viruses.用数学和病毒对抗癌症
Viruses. 2017 Aug 23;9(9):239. doi: 10.3390/v9090239.

本文引用的文献

2
On the laws of virus spread through cell populations.论病毒在细胞群体中的传播规律。
J Virol. 2014 Nov;88(22):13240-8. doi: 10.1128/JVI.02096-14. Epub 2014 Sep 3.
3
Going viral with cancer immunotherapy.癌症免疫疗法的爆红。
Nat Rev Cancer. 2014 Aug;14(8):559-67. doi: 10.1038/nrc3770. Epub 2014 Jul 3.
7
Tumor growth dynamics: insights into evolutionary processes.肿瘤生长动力学:对进化过程的洞察。
Trends Ecol Evol. 2013 Oct;28(10):597-604. doi: 10.1016/j.tree.2013.05.020. Epub 2013 Jun 28.
8
A mathematical model for cell cycle-specific cancer virotherapy.一种细胞周期特异性癌症病毒疗法的数学模型。
J Biol Dyn. 2012;6 Suppl 1:104-20. doi: 10.1080/17513758.2011.613486. Epub 2011 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验