The Mind Research Network Albuquerque, NM, USA.
Department of Computer Science, University of New Mexico Albuquerque, NM, USA.
Front Neurosci. 2014 Aug 20;8:229. doi: 10.3389/fnins.2014.00229. eCollection 2014.
Deep learning methods have recently made notable advances in the tasks of classification and representation learning. These tasks are important for brain imaging and neuroscience discovery, making the methods attractive for porting to a neuroimager's toolbox. Success of these methods is, in part, explained by the flexibility of deep learning models. However, this flexibility makes the process of porting to new areas a difficult parameter optimization problem. In this work we demonstrate our results (and feasible parameter ranges) in application of deep learning methods to structural and functional brain imaging data. These methods include deep belief networks and their building block the restricted Boltzmann machine. We also describe a novel constraint-based approach to visualizing high dimensional data. We use it to analyze the effect of parameter choices on data transformations. Our results show that deep learning methods are able to learn physiologically important representations and detect latent relations in neuroimaging data.
深度学习方法在分类和表示学习任务中取得了显著进展。这些任务对于脑成像和神经科学发现很重要,因此这些方法很有吸引力,可以引入神经影像学工作者的工具包中。这些方法的成功部分归因于深度学习模型的灵活性。然而,这种灵活性使得将其应用于新领域成为一个困难的参数优化问题。在这项工作中,我们展示了将深度学习方法应用于结构和功能脑成像数据的结果(以及可行的参数范围)。这些方法包括深度置信网络及其构建块受限玻尔兹曼机。我们还描述了一种新颖的基于约束的方法来可视化高维数据。我们使用它来分析参数选择对数据变换的影响。我们的结果表明,深度学习方法能够学习生理上重要的表示,并在神经影像学数据中检测潜在关系。