Suppr超能文献

受限玻尔兹曼机在神经影像学中的应用:内在网络识别。

Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks.

机构信息

Mind Research Network, Albuquerque, NM 87106, USA; Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA.

Mind Research Network, Albuquerque, NM 87106, USA; Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Neuroimage. 2014 Aug 1;96:245-60. doi: 10.1016/j.neuroimage.2014.03.048. Epub 2014 Mar 28.

Abstract

Matrix factorization models are the current dominant approach for resolving meaningful data-driven features in neuroimaging data. Among them, independent component analysis (ICA) is arguably the most widely used for identifying functional networks, and its success has led to a number of versatile extensions to group and multimodal data. However there are indications that ICA may have reached a limit in flexibility and representational capacity, as the majority of such extensions are case-driven, custom-made solutions that are still contained within the class of mixture models. In this work, we seek out a principled and naturally extensible approach and consider a probabilistic model known as a restricted Boltzmann machine (RBM). An RBM separates linear factors from functional brain imaging data by fitting a probability distribution model to the data. Importantly, the solution can be used as a building block for more complex (deep) models, making it naturally suitable for hierarchical and multimodal extensions that are not easily captured when using linear factorizations alone. We investigate the capability of RBMs to identify intrinsic networks and compare its performance to that of well-known linear mixture models, in particular ICA. Using synthetic and real task fMRI data, we show that RBMs can be used to identify networks and their temporal activations with accuracy that is equal or greater than that of factorization models. The demonstrated effectiveness of RBMs supports its use as a building block for deeper models, a significant prospect for future neuroimaging research.

摘要

矩阵分解模型是当前解析神经影像学数据中具有意义的驱动特征的主要方法。其中,独立成分分析(ICA)可以说是最常用于识别功能网络的方法,其成功导致了许多针对组学和多模态数据的多功能扩展。然而,有迹象表明 ICA 的灵活性和表示能力可能已经达到了极限,因为大多数此类扩展都是基于案例驱动的定制解决方案,仍然包含在混合模型类中。在这项工作中,我们寻求一种有原则且自然可扩展的方法,并考虑一种称为受限玻尔兹曼机(RBM)的概率模型。RBM 通过拟合数据的概率分布模型将线性因子与功能脑影像数据分离。重要的是,该解决方案可用作更复杂(深度)模型的构建块,使其非常适合分层和多模态扩展,而这些扩展在单独使用线性分解时很难捕捉到。我们研究了 RBM 识别内在网络的能力,并将其性能与著名的线性混合模型(尤其是 ICA)进行了比较。使用合成和真实任务 fMRI 数据,我们表明 RBM 可用于以与分解模型相等或更高的准确性识别网络及其时间激活。RBM 的有效性支持将其用作更深层次模型的构建块,这是未来神经影像学研究的一个重要前景。

相似文献

引用本文的文献

7
Recent advances of deep learning in psychiatric disorders.深度学习在精神疾病中的最新进展。
Precis Clin Med. 2020 Aug 28;3(3):202-213. doi: 10.1093/pcmedi/pbaa029. eCollection 2020 Sep.

本文引用的文献

1
Networks of task co-activations.任务协同激活网络。
Neuroimage. 2013 Oct 15;80:505-14. doi: 10.1016/j.neuroimage.2013.04.073. Epub 2013 Apr 28.
3
Tracking whole-brain connectivity dynamics in the resting state.在静息状态下追踪全脑连接动力学。
Cereb Cortex. 2014 Mar;24(3):663-76. doi: 10.1093/cercor/bhs352. Epub 2012 Nov 11.
8
Weight-conserving characterization of complex functional brain networks.复杂功能脑网络的保重量化特征。
Neuroimage. 2011 Jun 15;56(4):2068-79. doi: 10.1016/j.neuroimage.2011.03.069. Epub 2011 Apr 1.
9
A baseline for the multivariate comparison of resting-state networks.静息态网络的多元比较基准。
Front Syst Neurosci. 2011 Feb 4;5:2. doi: 10.3389/fnsys.2011.00002. eCollection 2011.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验