Suppr超能文献

线粒体DNA 3243A>G异质性的逐渐增加会导致突然的转录重编程。

Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming.

作者信息

Picard Martin, Zhang Jiangwen, Hancock Saege, Derbeneva Olga, Golhar Ryan, Golik Pawel, O'Hearn Sean, Levy Shawn, Potluri Prasanth, Lvova Maria, Davila Antonio, Lin Chun Shi, Perin Juan Carlos, Rappaport Eric F, Hakonarson Hakon, Trounce Ian A, Procaccio Vincent, Wallace Douglas C

机构信息

Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104;

School of Biological Sciences, The University of Hong Kong, Hong Kong, People's Republic of China;

出版信息

Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E4033-42. doi: 10.1073/pnas.1414028111. Epub 2014 Sep 5.

Abstract

Variation in the intracellular percentage of normal and mutant mitochondrial DNAs (mtDNA) (heteroplasmy) can be associated with phenotypic heterogeneity in mtDNA diseases. Individuals that inherit the common disease-causing mtDNA tRNA(Leu(UUR)) 3243A>G mutation and harbor ∼10-30% 3243G mutant mtDNAs manifest diabetes and occasionally autism; individuals with ∼50-90% mutant mtDNAs manifest encephalomyopathies; and individuals with ∼90-100% mutant mtDNAs face perinatal lethality. To determine the basis of these abrupt phenotypic changes, we generated somatic cell cybrids harboring increasing levels of the 3243G mutant and analyzed the associated cellular phenotypes and nuclear DNA (nDNA) and mtDNA transcriptional profiles by RNA sequencing. Small increases in mutant mtDNAs caused relatively modest defects in oxidative capacity but resulted in sharp transitions in cellular phenotype and gene expression. Cybrids harboring 20-30% 3243G mtDNAs had reduced mtDNA mRNA levels, rounded mitochondria, and small cell size. Cybrids with 50-90% 3243G mtDNAs manifest induction of glycolytic genes, mitochondrial elongation, increased mtDNA mRNA levels, and alterations in expression of signal transduction, epigenomic regulatory, and neurodegenerative disease-associated genes. Finally, cybrids with 100% 3243G experienced reduced mtDNA transcripts, rounded mitochondria, and concomitant changes in nuclear gene expression. Thus, striking phase changes occurred in nDNA and mtDNA gene expression in response to the modest changes of the mtDNA 3243G mutant levels. Hence, a major factor in the phenotypic variation in heteroplasmic mtDNA mutations is the limited number of states that the nucleus can acquire in response to progressive changes in mitochondrial retrograde signaling.

摘要

正常和突变型线粒体DNA(mtDNA)的细胞内百分比变化(异质性)可能与mtDNA疾病中的表型异质性相关。继承常见致病mtDNA tRNA(Leu(UUR))3243A>G突变且携带约10 - 30% 3243G突变型mtDNA的个体表现出糖尿病,偶尔还会患自闭症;携带约50 - 90%突变型mtDNA的个体表现出脑肌病;而携带约90 - 100%突变型mtDNA的个体面临围产期致死率。为了确定这些突然的表型变化的基础,我们构建了携带逐渐增加水平的3243G突变体的体细胞杂种细胞,并通过RNA测序分析了相关的细胞表型以及核DNA(nDNA)和mtDNA转录谱。突变型mtDNA的小幅增加在氧化能力方面引起相对适度的缺陷,但导致细胞表型和基因表达的急剧转变。携带20 - 30% 3243G mtDNA的杂种细胞线粒体DNA mRNA水平降低,线粒体呈圆形,细胞体积小。携带50 - 90% 3243G mtDNA的杂种细胞表现出糖酵解基因的诱导、线粒体延长、线粒体DNA mRNA水平增加以及信号转导、表观基因组调控和神经退行性疾病相关基因表达的改变。最后,携带100% 3243G的杂种细胞线粒体DNA转录本减少,线粒体呈圆形,同时核基因表达发生变化。因此,响应mtDNA 3243G突变体水平的适度变化,nDNA和mtDNA基因表达发生了显著的阶段性变化。因此,异质性mtDNA突变表型变异的一个主要因素是细胞核响应线粒体逆行信号逐渐变化时能够获得的状态数量有限。

相似文献

1
Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E4033-42. doi: 10.1073/pnas.1414028111. Epub 2014 Sep 5.
2
Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy.
Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):16028-16035. doi: 10.1073/pnas.1906896116. Epub 2019 Jun 28.
3
The MELAS mutation m.3243A>G promotes reactivation of fetal cardiac genes and an epithelial-mesenchymal transition-like program via dysregulation of miRNAs.
Biochim Biophys Acta Mol Basis Dis. 2018 Sep;1864(9 Pt B):3022-3037. doi: 10.1016/j.bbadis.2018.06.014. Epub 2018 Jun 19.
4
Metabolically induced heteroplasmy shifting and l-arginine treatment reduce the energetic defect in a neuronal-like model of MELAS.
Biochim Biophys Acta. 2012 Jun;1822(6):1019-29. doi: 10.1016/j.bbadis.2012.01.010. Epub 2012 Jan 28.
5
Complementation and segregation behavior of disease-causing mitochondrial DNA mutations in cellular model systems.
Biochim Biophys Acta. 1995 May 24;1271(1):241-8. doi: 10.1016/0925-4439(95)00034-2.
8
Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs.
Protein Cell. 2018 Mar;9(3):283-297. doi: 10.1007/s13238-017-0499-y. Epub 2018 Jan 9.

引用本文的文献

4
5
Intrinsic health as a foundation for a science of health.
Sci Adv. 2025 Jun 20;11(25):eadu8437. doi: 10.1126/sciadv.adu8437. Epub 2025 Jun 18.
6
Endometrial Aging and Reproductive Decline: The Central Role of Mitochondrial Dysfunction.
Int J Mol Sci. 2025 May 24;26(11):5060. doi: 10.3390/ijms26115060.
8
Metabolic remodeling in hiPSC-derived myofibers carrying the m.3243A>G mutation.
Stem Cell Reports. 2025 Apr 8;20(4):102448. doi: 10.1016/j.stemcr.2025.102448. Epub 2025 Mar 13.
9
Engineering mtDNA deletions by reconstituting end joining in human mitochondria.
Cell. 2025 May 15;188(10):2778-2793.e21. doi: 10.1016/j.cell.2025.02.009. Epub 2025 Mar 10.
10
Multi-tissue metabolomics reveal mtDNA- and diet-specific metabolite profiles in a mouse model of cardiometabolic disease.
Redox Biol. 2025 Apr;81:103541. doi: 10.1016/j.redox.2025.103541. Epub 2025 Feb 14.

本文引用的文献

2
Mitochondrial dynamics--mitochondrial fission and fusion in human diseases.
N Engl J Med. 2013 Dec 5;369(23):2236-51. doi: 10.1056/NEJMra1215233.
3
Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease.
Cold Spring Harb Perspect Biol. 2013 Nov 1;5(11):a021220. doi: 10.1101/cshperspect.a021220.
4
Tissue- and cell-type-specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3622-30. doi: 10.1073/pnas.1311660110. Epub 2013 Sep 3.
5
Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing.
Am J Hum Genet. 2013 Aug 8;93(2):249-63. doi: 10.1016/j.ajhg.2013.06.012. Epub 2013 Jul 11.
6
Epigenetic silencing mediates mitochondria stress-induced longevity.
Cell Metab. 2013 Jun 4;17(6):954-964. doi: 10.1016/j.cmet.2013.04.003.
7
A mitochondrial bioenergetic etiology of disease.
J Clin Invest. 2013 Apr;123(4):1405-12. doi: 10.1172/JCI61398. Epub 2013 Apr 1.
8
A systems approach for decoding mitochondrial retrograde signaling pathways.
Sci Signal. 2013 Feb 26;6(264):rs4. doi: 10.1126/scisignal.2003266.
9
Mitochondrial morphology transitions and functions: implications for retrograde signaling?
Am J Physiol Regul Integr Comp Physiol. 2013 Mar 15;304(6):R393-406. doi: 10.1152/ajpregu.00584.2012. Epub 2013 Jan 30.
10
An integrated map of genetic variation from 1,092 human genomes.
Nature. 2012 Nov 1;491(7422):56-65. doi: 10.1038/nature11632.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验