Suppr超能文献

通过生成模型解析神经反应中的信号与噪声

Disentangling signal and noise in neural responses through generative modeling.

作者信息

Kay Kendrick, Prince Jacob S, Gebhart Thomas, Tuckute Greta, Zhou Jingyang, Naselaris Thomas, Schütt Heiko H

机构信息

Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, Minnesota, United States of America.

Department of Psychology, Harvard University, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2025 Jul 21;21(7):e1012092. doi: 10.1371/journal.pcbi.1012092. eCollection 2025 Jul.

Abstract

Measurements of neural responses to identically repeated experimental events often exhibit large amounts of variability. This noise is distinct from signal, operationally defined as the average expected response across repeated trials for each given event. Accurately distinguishing signal from noise is important, as each is a target that is worthy of study (many believe noise reflects important aspects of brain function) and it is important not to confuse one for the other. Here, we describe a principled modeling approach in which response measurements are explicitly modeled as the sum of samples from multivariate signal and noise distributions. In our proposed method-termed Generative Modeling of Signal and Noise (GSN)-the signal distribution is estimated by subtracting the estimated noise distribution from the estimated data distribution. Importantly, GSN improves estimates of the signal distribution, but does not provide improved estimates of responses to individual events. We validate GSN using ground-truth simulations and show that it compares favorably with related methods. We also demonstrate the application of GSN to empirical fMRI data to illustrate a simple consequence of GSN: by disentangling signal and noise components in neural responses, GSN denoises principal components analysis and improves estimates of dimensionality. We end by discussing other situations that may benefit from GSN's characterization of signal and noise, such as estimation of noise ceilings for computational models of neural activity. A code toolbox for GSN is provided with both MATLAB and Python implementations.

摘要

对相同重复的实验事件的神经反应测量通常表现出大量的变异性。这种噪声与信号不同,信号在操作上被定义为每个给定事件在重复试验中的平均预期反应。准确区分信号和噪声很重要,因为它们都是值得研究的对象(许多人认为噪声反映了大脑功能的重要方面),而且重要的是不要将两者混淆。在这里,我们描述了一种有原则的建模方法,其中反应测量被明确建模为来自多元信号和噪声分布的样本之和。在我们提出的方法——称为信号与噪声生成建模(GSN)——中,通过从估计的数据分布中减去估计的噪声分布来估计信号分布。重要的是,GSN改进了信号分布的估计,但没有提供对单个事件反应的改进估计。我们使用真实模拟验证了GSN,并表明它与相关方法相比具有优势。我们还展示了GSN在经验性功能磁共振成像数据中的应用,以说明GSN的一个简单结果:通过解开神经反应中的信号和噪声成分,GSN对主成分分析进行了去噪,并改进了维度估计。我们最后讨论了其他可能受益于GSN对信号和噪声表征的情况,例如神经活动计算模型的噪声上限估计。提供了一个用于GSN的代码工具箱,同时有MATLAB和Python实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2af/12289057/20974951db99/pcbi.1012092.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验