Suppr超能文献

运用一般敏感性理论中的隐式方法来开发一种代谢控制的系统方法。I. 无分支途径。

Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. Unbranched pathways.

作者信息

Cascante M, Franco R, Canela E I

出版信息

Math Biosci. 1989 Jun;94(2):271-88. doi: 10.1016/0025-5564(89)90067-9.

Abstract

It is shown that metabolic control theory (MCT), is its present form, is a particular case of general sensitivity theory, which studies the effects of parameter variations on the behavior of dynamic systems. It has been shown that metabolic control theory is obtained from this more general theory for the particular case of steady-state and linear relationships between velocities and enzyme concentrations. In such conditions the relationships between elasticities and flux control coefficients are easily obtained. These relationships are in the form of a matrix product constructed in a priori form. Relationships between combined response coefficients and concentration control coefficients are presented. The use of implicit methodology from general sensitivity theory provides a generalization of MCT, which is applied to unbranched pathways. For this particular case, provided the matrices have been properly constructed, the matrix of global properties (flux and concentration control coefficients) can be obtained by inversion of the matrix of local properties (elasticities). The theorems of MCT (concentration summation, flux summation, flux connectivity, and concentration connectivity) applicable for unbranched pathways are directly obtained by inspection of the matrix product. With these results, the present theoretical basis of MCT is extended with a more structured framework that allows a wider range of application. The results make clearer the relatedness of MCT to the more general approach provided by biochemical systems theory (BST).

摘要

结果表明,代谢控制理论(MCT)的现有形式是一般灵敏度理论的一个特殊情况,一般灵敏度理论研究参数变化对动态系统行为的影响。已经表明,代谢控制理论是从这个更一般的理论中推导出来的,适用于速度与酶浓度之间稳态和线性关系的特殊情况。在这种情况下,弹性与通量控制系数之间的关系很容易得到。这些关系采用先验形式构建的矩阵乘积形式。给出了组合响应系数与浓度控制系数之间的关系。使用一般灵敏度理论中的隐式方法对MCT进行了推广,该方法适用于无分支途径。对于这种特殊情况,只要矩阵构建正确,全局性质矩阵(通量和浓度控制系数)可以通过局部性质矩阵(弹性)的求逆得到。通过检查矩阵乘积可直接得到适用于无分支途径的MCT定理(浓度总和、通量总和、通量连通性和浓度连通性)。有了这些结果,MCT目前的理论基础通过一个更结构化的框架得到了扩展,该框架允许更广泛的应用。这些结果更清楚地表明了MCT与生化系统理论(BST)提供的更一般方法之间的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验