Suppr超能文献

运用一般敏感性理论中的隐式方法来开发一种代谢控制的系统方法。II. 复杂系统。

Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. Complex systems.

作者信息

Cascante M, Franco R, Canela E I

出版信息

Math Biosci. 1989 Jun;94(2):289-309. doi: 10.1016/0025-5564(89)90068-0.

Abstract

In the accompanying paper (Cascante et al., this issue) we have used general sensitivity theory to develop a matrix algebra that, in the case of sequential reactions, directly relates global and local properties of a given system. In complex biochemical systems this direct relationship is not possible due to the existence of linear dependencies among fluxes and among metabolite concentrations (conserved aggregate concentrations in BST or moiety-conserved concentrations in MCT). In this paper our matrix algebra is applied to conserved cycles and branched pathways, and it is shown that with minor modifications it again relates global properties to the local properties of the enzymes in the system. In the case of conserved cycles, elasticities become modified due to the existence of linear dependencies among the concentration variables in the cycle. In branched pathways, new matrix elements involving ratios of fluxes appear. With these modifications, one can show that the so-called theorems of metabolic control theory specific to these types of pathways are special cases of more general relationships. Rules for the construction of matrices relating global and local properties are given that apply to an arbitrary system of cycles and branches. The implicit approach developed in these papers, which is a generalization of that used in MCT, allows one to make more direct comparisons with the general explicit approach originally developed in BST.

摘要

在随附论文(卡斯坎特等人,本期)中,我们运用一般敏感性理论构建了一种矩阵代数,在序列反应的情况下,该代数能直接关联给定系统的全局性质和局部性质。在复杂生化系统中,由于通量之间以及代谢物浓度之间存在线性相关性(在生物系统理论中的守恒聚集体浓度或在代谢控制理论中的部分守恒浓度),这种直接关联是不可能的。在本文中,我们的矩阵代数应用于守恒循环和分支途径,结果表明,只需进行微小修改,它就能再次将系统中酶的全局性质与局部性质联系起来。在守恒循环的情况下,由于循环中浓度变量之间存在线性相关性,弹性会发生改变。在分支途径中,会出现涉及通量比值的新矩阵元素。通过这些修改,可以证明代谢控制理论中特定于这些类型途径的所谓定理是更一般关系的特殊情况。给出了构建关联全局性质和局部性质矩阵的规则,这些规则适用于任意的循环和分支系统。这些论文中发展的隐式方法是对代谢控制理论中所用方法的推广,它使人们能够更直接地与最初在生物系统理论中发展的一般显式方法进行比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验