Suppr超能文献

RhoA-ROCK-BMP信号通路的激活可重编程成人人类角膜内皮细胞。

Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells.

作者信息

Zhu Ying-Ting, Li Fu, Han Bo, Tighe Sean, Zhang Suzhen, Chen Szu-Yu, Liu Xin, Tseng Scheffer C G

机构信息

TissueTech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL 33173.

Pediatric Research Institute and Department of Pediatric Hematology, Qilu Children's Hospital, Shandong University, Jinan, Shandong 250022, People's Republic of China.

出版信息

J Cell Biol. 2014 Sep 15;206(6):799-811. doi: 10.1083/jcb.201404032. Epub 2014 Sep 8.

Abstract

Currently there are limited treatment options for corneal blindness caused by dysfunctional corneal endothelial cells. The primary treatment involves transplantation of healthy donor human corneal endothelial cells, but a global shortage of donor corneas necessitates other options. Conventional tissue approaches for corneal endothelial cells are based on EDTA-trypsin treatment and run the risk of irreversible endothelial mesenchymal transition by activating canonical Wingless-related integration site (Wnt) and TGF-β signaling. Herein, we demonstrate an alternative strategy that avoids disruption of cell-cell junctions and instead activates Ras homologue gene family A (RhoA)-Rho-associated protein kinase (ROCK)-canonical bone morphogenic protein signaling to reprogram adult human corneal endothelial cells to neural crest-like progenitors via activation of the miR302b-Oct4-Sox2-Nanog network. This approach allowed us to engineer eight human corneal endothelial monolayers of transplantable size, with a normal density and phenotype from one corneoscleral rim. Given that a similar signal network also exists in the retinal pigment epithelium, this partial reprogramming approach may have widespread relevance and potential for treating degenerative diseases.

摘要

目前,对于由功能失调的角膜内皮细胞引起的角膜盲,治疗选择有限。主要治疗方法是移植健康供体的人角膜内皮细胞,但全球供体角膜短缺使得必须寻找其他选择。传统的角膜内皮细胞组织处理方法基于乙二胺四乙酸 - 胰蛋白酶处理,存在通过激活经典的无翅相关整合位点(Wnt)和转化生长因子-β(TGF-β)信号传导导致不可逆的内皮间充质转化的风险。在此,我们展示了一种替代策略,该策略避免破坏细胞间连接,而是激活Ras同源基因家族A(RhoA)-Rho相关蛋白激酶(ROCK)-经典骨形态发生蛋白信号传导,通过激活miR302b - Oct4 - Sox2 - Nanog网络将成人角膜内皮细胞重编程为神经嵴样祖细胞。这种方法使我们能够从一个角膜缘构建出八个具有正常密度和表型、可移植大小的人角膜内皮单层。鉴于视网膜色素上皮中也存在类似的信号网络,这种部分重编程方法可能在治疗退行性疾病方面具有广泛的相关性和潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3143/4164941/da6358bf5b7d/JCB_201404032_Fig1.jpg

相似文献

1
Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells.
J Cell Biol. 2014 Sep 15;206(6):799-811. doi: 10.1083/jcb.201404032. Epub 2014 Sep 8.
4
LIF-JAK1-STAT3 signaling delays contact inhibition of human corneal endothelial cells.
Cell Cycle. 2015;14(8):1197-206. doi: 10.1080/15384101.2015.1013667.
5
Engineering of Human Corneal Endothelial Grafts.
Curr Ophthalmol Rep. 2015 Sep;3(3):207-217. doi: 10.1007/s40135-015-0077-5. Epub 2015 Jun 27.
6
WNT10B enhances proliferation through β-catenin and RAC1 GTPase in human corneal endothelial cells.
J Biol Chem. 2015 Oct 30;290(44):26752-64. doi: 10.1074/jbc.M115.677245. Epub 2015 Sep 14.
10
Interleukin-1β-induced Wnt5a enhances human corneal endothelial cell migration through regulation of Cdc42 and RhoA.
Mol Cell Biol. 2014 Sep 15;34(18):3535-45. doi: 10.1128/MCB.01572-13. Epub 2014 Jul 14.

引用本文的文献

2
Manufacturing of human corneal endothelial grafts.
Ocul Surf. 2023 Jul;29:301-310. doi: 10.1016/j.jtos.2023.05.004. Epub 2023 Jun 1.
3
Proliferation Increasing Genetic Engineering in Human Corneal Endothelial Cells: A Literature Review.
Front Med (Lausanne). 2021 Jun 29;8:688223. doi: 10.3389/fmed.2021.688223. eCollection 2021.
6
Cellular Substrates for Cell-Based Tissue Engineering of Human Corneal Endothelial Cells.
Int J Med Sci. 2019 Jul 21;16(8):1072-1077. doi: 10.7150/ijms.34440. eCollection 2019.
7
Non-coding RNA in endothelial-to-mesenchymal transition.
Cardiovasc Res. 2019 Oct 1;115(12):1716-1731. doi: 10.1093/cvr/cvz211.
8
Human Trabecular Meshwork Progenitors.
Int J Med Sci. 2019 May 10;16(5):704-710. doi: 10.7150/ijms.32089. eCollection 2019.
9
Crosstalk between BMP and Notch Induces Sox2 in Cerebral Endothelial Cells.
Cells. 2019 Jun 6;8(6):549. doi: 10.3390/cells8060549.
10
Engineering of Human Corneal Endothelial Cells .
Int J Med Sci. 2019 Mar 10;16(4):507-512. doi: 10.7150/ijms.30759. eCollection 2019.

本文引用的文献

2
Rho kinase proteins regulate global miRNA expression in endothelial cells.
Cancer Genomics Proteomics. 2013 Nov-Dec;10(6):251-63.
3
Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling.
J Mol Cell Cardiol. 2013 Sep;62:43-50. doi: 10.1016/j.yjmcc.2013.04.022. Epub 2013 Apr 30.
6
Mesenchymal stem cells derived from human limbal niche cells.
Invest Ophthalmol Vis Sci. 2012 Aug 17;53(9):5686-97. doi: 10.1167/iovs.12-10300.
7
ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue.
Am J Pathol. 2012 Jul;181(1):268-77. doi: 10.1016/j.ajpath.2012.03.033. Epub 2012 Jun 14.
8
Human induced pluripotent stem cells--from mechanisms to clinical applications.
J Mol Med (Berl). 2012 Jul;90(7):735-45. doi: 10.1007/s00109-012-0913-0. Epub 2012 May 30.
10
Angiogenesis potential of human limbal stromal niche cells.
Invest Ophthalmol Vis Sci. 2012 Jun 5;53(7):3357-67. doi: 10.1167/iovs.11-9414.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验