Suppr超能文献

脂滴蛋白LID-1在秀丽隐杆线虫禁食期间介导ATGL-1依赖性脂解作用。

Lipid droplet protein LID-1 mediates ATGL-1-dependent lipolysis during fasting in Caenorhabditis elegans.

作者信息

Lee Jung Hyun, Kong Jinuk, Jang Ju Yeon, Han Ji Seul, Ji Yul, Lee Junho, Kim Jae Bum

机构信息

Department of Biological Sciences, Institute of Molecular Biology & Genetics, Seoul National University, Seoul, South Korea.

Department of Biological Sciences, Institute of Molecular Biology & Genetics, Seoul National University, Seoul, South Korea Department of Biophysics and Chemical Biology, Seoul National University, Seoul, South Korea.

出版信息

Mol Cell Biol. 2014 Nov 15;34(22):4165-76. doi: 10.1128/MCB.00722-14. Epub 2014 Sep 8.

Abstract

Lipolysis is a delicate process involving complex signaling cascades and sequential enzymatic activations. In Caenorhabditis elegans, fasting induces various physiological changes, including a dramatic decrease in lipid contents through lipolysis. Interestingly, C. elegans lacks perilipin family genes which play a crucial role in the regulation of lipid homeostasis in other species. Here, we demonstrate that in the intestinal cells of C. elegans, a newly identified protein, lipid droplet protein 1 (C25A1.12; LID-1), modulates lipolysis by binding to adipose triglyceride lipase 1 (C05D11.7; ATGL-1) during nutritional deprivation. In fasted worms, lipid droplets were decreased in intestinal cells, whereas suppression of ATGL-1 via RNA interference (RNAi) resulted in retention of stored lipid droplets. Overexpression of ATGL-1 markedly decreased lipid droplets, whereas depletion of LID-1 via RNAi prevented the effect of overexpressed ATGL-1 on lipolysis. In adult worms, short-term fasting increased cyclic AMP (cAMP) levels, which activated protein kinase A (PKA) to stimulate lipolysis via ATGL-1 and LID-1. Moreover, ATGL-1 protein stability and LID-1 binding were augmented by PKA activation, eventually leading to increased lipolysis. These data suggest the importance of the concerted action of lipase and lipid droplet protein in the response to fasting signals via PKA to maintain lipid homeostasis.

摘要

脂肪分解是一个涉及复杂信号级联和一系列酶激活的精细过程。在秀丽隐杆线虫中,禁食会引发各种生理变化,包括通过脂肪分解使脂质含量显著降低。有趣的是,秀丽隐杆线虫缺乏在其他物种脂质稳态调节中起关键作用的围脂滴蛋白家族基因。在此,我们证明,在秀丽隐杆线虫的肠道细胞中,一种新鉴定的蛋白质——脂滴蛋白1(C25A1.12;LID-1),在营养缺乏期间通过与脂肪甘油三酯脂肪酶1(C05D11.7;ATGL-1)结合来调节脂肪分解。在禁食的线虫中,肠道细胞中的脂滴减少,而通过RNA干扰(RNAi)抑制ATGL-1会导致储存的脂滴保留。ATGL-1的过表达显著减少了脂滴,而通过RNAi耗尽LID-1则阻止了过表达的ATGL-1对脂肪分解的影响。在成年线虫中,短期禁食会增加环磷酸腺苷(cAMP)水平,cAMP激活蛋白激酶A(PKA),通过ATGL-1和LID-1刺激脂肪分解。此外,PKA激活增强了ATGL-1的蛋白质稳定性和与LID-1的结合,最终导致脂肪分解增加。这些数据表明,脂肪酶和脂滴蛋白协同作用,通过PKA对禁食信号作出反应以维持脂质稳态具有重要意义。

相似文献

1
Lipid droplet protein LID-1 mediates ATGL-1-dependent lipolysis during fasting in Caenorhabditis elegans.
Mol Cell Biol. 2014 Nov 15;34(22):4165-76. doi: 10.1128/MCB.00722-14. Epub 2014 Sep 8.
3
Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein.
J Biol Chem. 2011 May 6;286(18):15707-15. doi: 10.1074/jbc.M110.207779. Epub 2011 Mar 9.
5
AMP-Activated Kinase Regulates Lipid Droplet Localization and Stability of Adipose Triglyceride Lipase in C. elegans Dauer Larvae.
PLoS One. 2015 Jun 22;10(6):e0130480. doi: 10.1371/journal.pone.0130480. eCollection 2015.
6
Protein Kinase A Subunit Balance Regulates Lipid Metabolism in Caenorhabditis elegans and Mammalian Adipocytes.
J Biol Chem. 2016 Sep 23;291(39):20315-28. doi: 10.1074/jbc.M116.740464. Epub 2016 Aug 4.
7
β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure.
J Biol Chem. 2017 Jul 14;292(28):11815-11828. doi: 10.1074/jbc.M117.777748. Epub 2017 May 17.
9
The ATGL lipase cooperates with ABHD5 to mobilize lipids for hepatitis C virus assembly.
PLoS Pathog. 2020 Jun 15;16(6):e1008554. doi: 10.1371/journal.ppat.1008554. eCollection 2020 Jun.
10
Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body.
J Biol Chem. 2005 Jun 17;280(24):22624-31. doi: 10.1074/jbc.M413128200. Epub 2005 Apr 13.

引用本文的文献

2
Hexokinase regulates Mondo-mediated longevity via the PPP and organellar dynamics.
Elife. 2025 Aug 11;12:RP89225. doi: 10.7554/eLife.89225.
3
Microsporidia infection alters C. elegans lipid levels.
PLoS One. 2025 Jul 1;20(7):e0327188. doi: 10.1371/journal.pone.0327188. eCollection 2025.
5
Tools to Dissect Lipid Droplet Regulation, Players, and Mechanisms.
ACS Chem Biol. 2025 Mar 21;20(3):539-552. doi: 10.1021/acschembio.4c00835. Epub 2025 Mar 4.
6
PKA regulates autophagy through lipolysis during fasting.
Mol Cells. 2024 Dec;47(12):100149. doi: 10.1016/j.mocell.2024.100149. Epub 2024 Nov 13.
7
An important role for triglyceride in regulating spermatogenesis.
Elife. 2024 May 28;12:RP87523. doi: 10.7554/eLife.87523.
8
LET-767 determines lipid droplet protein targeting and lipid homeostasis.
J Cell Biol. 2024 Jun 3;223(6). doi: 10.1083/jcb.202311024. Epub 2024 Mar 29.
9
Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation.
PLoS Genet. 2024 Mar 28;20(3):e1011003. doi: 10.1371/journal.pgen.1011003. eCollection 2024 Mar.
10
Autumn Olive ( Thunb.) Berries Improve Lipid Metabolism and Delay Aging in Middle-Aged .
Int J Mol Sci. 2024 Mar 18;25(6):3418. doi: 10.3390/ijms25063418.

本文引用的文献

1
Comparative gene identification 58/α/β hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity.
J Lipid Res. 2014 Aug;55(8):1750-61. doi: 10.1194/jlr.M051151. Epub 2014 May 30.
2
An integrated serotonin and octopamine neuronal circuit directs the release of an endocrine signal to control C. elegans body fat.
Cell Metab. 2013 Nov 5;18(5):672-84. doi: 10.1016/j.cmet.2013.09.007. Epub 2013 Oct 10.
3
Dual regulation of adipose triglyceride lipase by pigment epithelium-derived factor: a novel mechanistic insight into progressive obesity.
Mol Cell Endocrinol. 2013 Sep 5;377(1-2):123-34. doi: 10.1016/j.mce.2013.07.001. Epub 2013 Jul 10.
4
MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability.
Nat Cell Biol. 2013 Jun;15(6):668-76. doi: 10.1038/ncb2741. Epub 2013 Apr 21.
5
ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy.
Genes Dev. 2013 Feb 15;27(4):429-40. doi: 10.1101/gad.205294.112. Epub 2013 Feb 7.
6
Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover.
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1345-50. doi: 10.1073/pnas.1213738110. Epub 2013 Jan 7.
7
The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface.
J Cell Biol. 2012 Sep 3;198(5):895-911. doi: 10.1083/jcb.201201139. Epub 2012 Aug 27.
9
Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets.
Mol Cell Proteomics. 2012 Aug;11(8):317-28. doi: 10.1074/mcp.M111.016345. Epub 2012 Apr 9.
10
AMPK: a nutrient and energy sensor that maintains energy homeostasis.
Nat Rev Mol Cell Biol. 2012 Mar 22;13(4):251-62. doi: 10.1038/nrm3311.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验