Wang Lin, Quine Skyler, Frickenstein Alex N, Lee Michael, Yang Wen, Sheth Vinit M, Bourlon Margaret D, He Yuxin, Lyu Shanxin, Garcia-Contreras Lucila, Zhao Yan D, Wilhelm Stefan
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA.
College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA.
Adv Funct Mater. 2024 Feb 19;34(8). doi: 10.1002/adfm.202308446. Epub 2023 Nov 20.
Most nanomedicines require efficient delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
大多数纳米药物需要高效递送才能产生诊断和治疗效果。然而,在到达目标组织的途中,全身给药的纳米颗粒常常会遇到递送障碍。为了描述这些障碍,我们提出了“纳米颗粒血液清除途径”(NBRP)这一术语,它总结了纳米颗粒与人体各种细胞依赖性和非细胞依赖性血液清除机制之间的相互作用。我们回顾了纳米颗粒设计和生物调节策略,以减轻纳米颗粒与NBRP的相互作用。由于这些相互作用会影响纳米颗粒的递送,我们研究了2011年至2021年的临床前文献,并分析了纳米颗粒的血液循环和器官生物分布数据。我们的研究结果表明,纳米颗粒表面化学对其行为的影响大于其他纳米颗粒设计参数。生物聚乙二醇表面修饰组合使血药浓度曲线下面积提高了约418%,肝脏蓄积量降低了47%。对纳米颗粒与NBRP相互作用及相关递送趋势的更深入了解,将为更安全、更有效、更高效的纳米药物提供新的纳米颗粒设计和生物调节策略。