Suppr超能文献

基于广义线性模型分析和人体头部解剖图谱的深度补偿漫射光学断层成像增强。

Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head.

机构信息

Department of Bioengineering, Joint Program in Biomedical Engineering between UT Arlington and UT Southwestern Medical Center at Dallas, University of Texas at Arlington, Arlington, TX, USA.

出版信息

Neuroimage. 2014 Jan 15;85 Pt 1(0 1):166-80. doi: 10.1016/j.neuroimage.2013.07.016. Epub 2013 Jul 14.

Abstract

One of the main challenges in functional diffuse optical tomography (DOT) is to accurately recover the depth of brain activation, which is even more essential when differentiating true brain signals from task-evoked artifacts in the scalp. Recently, we developed a depth-compensated algorithm (DCA) to minimize the depth localization error in DOT. However, the semi-infinite model that was used in DCA deviated significantly from the realistic human head anatomy. In the present work, we incorporated depth-compensated DOT (DC-DOT) with a standard anatomical atlas of human head. Computer simulations and human measurements of sensorimotor activation were conducted to examine and prove the depth specificity and quantification accuracy of brain atlas-based DC-DOT. In addition, node-wise statistical analysis based on the general linear model (GLM) was also implemented and performed in this study, showing the robustness of DC-DOT that can accurately identify brain activation at the correct depth for functional brain imaging, even when co-existing with superficial artifacts.

摘要

功能漫射光学断层成像(DOT)的主要挑战之一是准确地恢复大脑激活的深度,当需要从头皮上的任务诱发伪影中区分真正的大脑信号时,这一点尤为重要。最近,我们开发了一种深度补偿算法(DCA)来最小化 DOT 中的深度定位误差。然而,DCA 中使用的半无限模型与现实的人类头部解剖结构有很大的偏差。在本工作中,我们将深度补偿 DOT(DC-DOT)与人类头部的标准解剖图谱相结合。进行了传感器运动激活的计算机模拟和人体测量,以检查和证明基于大脑图谱的 DC-DOT 的深度特异性和量化准确性。此外,本研究还实现并执行了基于广义线性模型(GLM)的节点统计分析,显示了 DC-DOT 的稳健性,即使与表面伪影共存,它也可以准确地识别功能脑成像中正确深度的大脑激活。

相似文献

1
Depth-compensated diffuse optical tomography enhanced by general linear model analysis and an anatomical atlas of human head.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):166-80. doi: 10.1016/j.neuroimage.2013.07.016. Epub 2013 Jul 14.
3
Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):117-26. doi: 10.1016/j.neuroimage.2013.03.069. Epub 2013 Apr 8.
5
Statistical analysis of high density diffuse optical tomography.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):104-16. doi: 10.1016/j.neuroimage.2013.05.105. Epub 2013 Jun 2.
6
Optimizing the regularization for image reconstruction of cerebral diffuse optical tomography.
J Biomed Opt. 2014 Sep;19(9):96006. doi: 10.1117/1.JBO.19.9.096006.
7
Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies.
Neuroimage. 2012 Sep;62(3):1999-2006. doi: 10.1016/j.neuroimage.2012.05.031. Epub 2012 May 23.
8
Anatomical atlas-guided diffuse optical tomography of brain activation.
Neuroimage. 2010 Jan 1;49(1):561-7. doi: 10.1016/j.neuroimage.2009.07.033. Epub 2009 Jul 28.
9
Multi-subject and multi-task experimental validation of the hierarchical Bayesian diffuse optical tomography algorithm.
Neuroimage. 2016 Jul 15;135:287-99. doi: 10.1016/j.neuroimage.2016.04.068. Epub 2016 May 3.
10
A 4D neonatal head model for diffuse optical imaging of pre-term to term infants.
Neuroimage. 2014 Oct 15;100:385-94. doi: 10.1016/j.neuroimage.2014.06.028. Epub 2014 Jun 18.

引用本文的文献

1
Continuous Wave-Diffuse Optical Tomography (CW-DOT) in Human Brain Mapping: A Review.
Sensors (Basel). 2025 Mar 25;25(7):2040. doi: 10.3390/s25072040.
2
Cross-modal representation of chewing food in posterior parietal and visual cortex.
PLoS One. 2024 Oct 25;19(10):e0310513. doi: 10.1371/journal.pone.0310513. eCollection 2024.
4
SpeckleCam: high-resolution computational speckle contrast tomography for deep blood flow imaging.
Biomed Opt Express. 2023 Sep 20;14(10):5316-5337. doi: 10.1364/BOE.498900. eCollection 2023 Oct 1.
6
Impact of Anatomical Variability on Sensitivity Profile in fNIRS-MRI Integration.
Sensors (Basel). 2023 Feb 13;23(4):2089. doi: 10.3390/s23042089.
9
Continuous monitoring method of cerebral subdural hematoma based on MRI guided DOT.
Biomed Opt Express. 2020 May 11;11(6):2964-2975. doi: 10.1364/BOE.388059. eCollection 2020 Jun 1.

本文引用的文献

1
Diffuse Optics for Tissue Monitoring and Tomography.
Rep Prog Phys. 2010 Jul;73(7). doi: 10.1088/0034-4885/73/7/076701.
4
Image quality analysis of high-density diffuse optical tomography incorporating a subject-specific head model.
Front Neuroenergetics. 2012 May 24;4:6. doi: 10.3389/fnene.2012.00006. eCollection 2012.
5
Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies.
Neuroimage. 2012 Sep;62(3):1999-2006. doi: 10.1016/j.neuroimage.2012.05.031. Epub 2012 May 23.
6
Sparsity enhanced spatial resolution and depth localization in diffuse optical tomography.
Biomed Opt Express. 2012 May 1;3(5):943-57. doi: 10.1364/BOE.3.000943. Epub 2012 Apr 12.
7
The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy.
Neuroimage. 2012 May 15;61(1):70-81. doi: 10.1016/j.neuroimage.2012.02.074. Epub 2012 Mar 9.
8
A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping.
Neuroimage. 2012 Jul 16;61(4):1120-8. doi: 10.1016/j.neuroimage.2012.01.124. Epub 2012 Feb 10.
9
Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography.
Neuroimage. 2012 Feb 15;59(4):3201-11. doi: 10.1016/j.neuroimage.2011.11.062. Epub 2011 Dec 1.
10
Magnetic-stimulation-related physiological artifacts in hemodynamic near-infrared spectroscopy signals.
PLoS One. 2011;6(8):e24002. doi: 10.1371/journal.pone.0024002. Epub 2011 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验