Suppr超能文献

酶的多功能性:进化创新的引擎。

Enzyme promiscuity: engine of evolutionary innovation.

机构信息

Bioinformatics Graduate Program and Boston University, Boston, Massachusetts 02215.

Department of Chemistry, Boston University, Boston, Massachusetts 02215 and.

出版信息

J Biol Chem. 2014 Oct 31;289(44):30229-30236. doi: 10.1074/jbc.R114.572990. Epub 2014 Sep 10.

Abstract

Catalytic promiscuity and substrate ambiguity are keys to evolvability, which in turn is pivotal to the successful acquisition of novel biological functions. Action on multiple substrates (substrate ambiguity) can be harnessed for performance of functions in the cell that supersede catalysis of a single metabolite. These functions include proofreading, scavenging of nutrients, removal of antimetabolites, balancing of metabolite pools, and establishing system redundancy. In this review, we present examples of enzymes that perform these cellular roles by leveraging substrate ambiguity and then present the structural features that support both specificity and ambiguity. We focus on the phosphatases of the haloalkanoate dehalogenase superfamily and the thioesterases of the hotdog fold superfamily.

摘要

催化的混杂性和底物的模糊性是进化的关键,而进化又是成功获得新的生物功能的关键。对多种底物的作用(底物模糊性)可以用于在细胞中执行超越单一代谢物催化的功能。这些功能包括校对、营养物质的清除、抗代谢物的去除、代谢物池的平衡以及建立系统冗余。在这篇综述中,我们介绍了一些通过利用底物模糊性来发挥这些细胞功能的酶的例子,然后介绍了支持特异性和模糊性的结构特征。我们重点介绍了卤代烷酸脱卤酶超家族的磷酸酶和热狗折叠超家族的硫酯酶。

相似文献

1
Enzyme promiscuity: engine of evolutionary innovation.
J Biol Chem. 2014 Oct 31;289(44):30229-30236. doi: 10.1074/jbc.R114.572990. Epub 2014 Sep 10.
3
Enzyme promiscuity: a mechanistic and evolutionary perspective.
Annu Rev Biochem. 2010;79:471-505. doi: 10.1146/annurev-biochem-030409-143718.
4
Introduction to the thematic minireview series on enzyme evolution.
J Biol Chem. 2014 Oct 31;289(44):30196-30197. doi: 10.1074/jbc.R114.610766. Epub 2014 Sep 10.
6
Panoramic view of a superfamily of phosphatases through substrate profiling.
Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E1974-83. doi: 10.1073/pnas.1423570112. Epub 2015 Apr 6.
7
Molecular signatures-based prediction of enzyme promiscuity.
Bioinformatics. 2010 Aug 15;26(16):2012-9. doi: 10.1093/bioinformatics/btq317. Epub 2010 Jun 15.
9
Shining a light on enzyme promiscuity.
Curr Opin Struct Biol. 2017 Dec;47:167-175. doi: 10.1016/j.sbi.2017.11.001. Epub 2017 Nov 21.
10
An evolutionary biochemist's perspective on promiscuity.
Trends Biochem Sci. 2015 Feb;40(2):72-8. doi: 10.1016/j.tibs.2014.12.004. Epub 2015 Jan 5.

引用本文的文献

1
Structural insights into manganese-dependent arylsulfatase from and its catalytic promiscuity.
mBio. 2025 Sep 10;16(9):e0003125. doi: 10.1128/mbio.00031-25. Epub 2025 Aug 8.
2
Harnessing enzyme promiscuity of alditol-2-dehydrogenases for oxidation of alditols to enantiopure ketoses.
PLoS One. 2025 Jun 25;20(6):e0325955. doi: 10.1371/journal.pone.0325955. eCollection 2025.
3
Lignocellulose degradation in bacteria and fungi: cellulosomes and industrial relevance.
Front Microbiol. 2025 Apr 25;16:1583746. doi: 10.3389/fmicb.2025.1583746. eCollection 2025.
4
Ancestral Sequence Reconstruction for Designing Biocatalysts and Investigating their Functional Mechanisms.
JACS Au. 2024 Oct 25;4(12):4571-4591. doi: 10.1021/jacsau.4c00653. eCollection 2024 Dec 23.
5
Changes in Active Site Loop Conformation Relate to the Transition toward a Novel Enzymatic Activity.
JACS Au. 2024 Apr 25;4(5):1941-1953. doi: 10.1021/jacsau.4c00179. eCollection 2024 May 27.
8
Characterization of PglJ, a Glycosyltransferase in the N-Linked Protein Glycosylation Pathway that Expands Glycan Diversity.
Biochemistry. 2024 Jan 2;63(1):141-151. doi: 10.1021/acs.biochem.3c00564. Epub 2023 Dec 18.
9
Enzyme function and evolution through the lens of bioinformatics.
Biochem J. 2023 Nov 29;480(22):1845-1863. doi: 10.1042/BCJ20220405.

本文引用的文献

1
Structure and catalysis in the Escherichia coli hotdog-fold thioesterase paralogs YdiI and YbdB.
Biochemistry. 2014 Jul 29;53(29):4788-805. doi: 10.1021/bi500334v. Epub 2014 Jul 18.
2
Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily.
J Mol Biol. 2014 Jun 26;426(13):2442-56. doi: 10.1016/j.jmb.2014.04.013. Epub 2014 Apr 24.
3
Crystal structures of the novel cytosolic 5'-nucleotidase IIIB explain its preference for m7GMP.
PLoS One. 2014 Mar 6;9(3):e90915. doi: 10.1371/journal.pone.0090915. eCollection 2014.
6
Revealing the hidden functional diversity of an enzyme family.
Nat Chem Biol. 2014 Jan;10(1):42-9. doi: 10.1038/nchembio.1387. Epub 2013 Nov 17.
7
Differential active site loop conformations mediate promiscuous activities in the lactonase SsoPox.
PLoS One. 2013 Sep 23;8(9):e75272. doi: 10.1371/journal.pone.0075272. eCollection 2013.
9
Evolution of a designed retro-aldolase leads to complete active site remodeling.
Nat Chem Biol. 2013 Aug;9(8):494-8. doi: 10.1038/nchembio.1276. Epub 2013 Jun 9.
10
What makes a protein fold amenable to functional innovation? Fold polarity and stability trade-offs.
J Mol Biol. 2013 Jul 24;425(14):2609-21. doi: 10.1016/j.jmb.2013.03.033. Epub 2013 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验