Suppr超能文献

宿主与病原体界面处的金属限制与毒性

Metal limitation and toxicity at the interface between host and pathogen.

作者信息

Becker Kyle W, Skaar Eric P

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.

出版信息

FEMS Microbiol Rev. 2014 Nov;38(6):1235-49. doi: 10.1111/1574-6976.12087. Epub 2014 Sep 29.

Abstract

Metals are required cofactors for numerous fundamental processes that are essential to both pathogen and host. They are coordinated in enzymes responsible for DNA replication and transcription, relief from oxidative stress, and cellular respiration. However, excess transition metals can be toxic due to their ability to cause spontaneous, redox cycling and disrupt normal metabolic processes. Vertebrates have evolved intricate mechanisms to limit the availability of some crucial metals while concurrently flooding sites of infection with antimicrobial concentrations of other metals. To compete for limited metal within the host while simultaneously preventing metal toxicity, pathogens have developed a series of metal regulatory, acquisition, and efflux systems. This review will cover the mechanisms by which pathogenic bacteria recognize and respond to host-induced metal scarcity and toxicity.

摘要

金属是病原体和宿主众多基本过程所必需的辅助因子。它们在负责DNA复制、转录、缓解氧化应激和细胞呼吸的酶中发挥协同作用。然而,过量的过渡金属可能具有毒性,因为它们能够引发自发的氧化还原循环并扰乱正常的代谢过程。脊椎动物已经进化出复杂的机制来限制某些关键金属的可利用性,同时用抗菌浓度的其他金属充斥感染部位。为了在宿主体内竞争有限的金属,同时防止金属毒性,病原体已经开发出一系列金属调节、获取和外排系统。本综述将涵盖致病细菌识别和应对宿主诱导的金属稀缺和毒性的机制。

相似文献

1
Metal limitation and toxicity at the interface between host and pathogen.
FEMS Microbiol Rev. 2014 Nov;38(6):1235-49. doi: 10.1111/1574-6976.12087. Epub 2014 Sep 29.
2
Transition Metals and Virulence in Bacteria.
Annu Rev Genet. 2016 Nov 23;50:67-91. doi: 10.1146/annurev-genet-120215-035146. Epub 2016 Sep 7.
3
Role of divalent metals in infectious disease susceptibility and outcome.
Clin Microbiol Infect. 2018 Jan;24(1):16-23. doi: 10.1016/j.cmi.2017.01.018. Epub 2017 Jan 29.
4
Manganese acquisition and homeostasis at the host-pathogen interface.
Front Cell Infect Microbiol. 2013 Dec 5;3:91. doi: 10.3389/fcimb.2013.00091. eCollection 2013.
5
Nutritional immunity: transition metals at the pathogen-host interface.
Nat Rev Microbiol. 2012 Jul 16;10(8):525-37. doi: 10.1038/nrmicro2836.
6
The role of metal ions in the virulence and viability of bacterial pathogens.
Biochem Soc Trans. 2019 Feb 28;47(1):77-87. doi: 10.1042/BST20180275. Epub 2019 Jan 9.
7
The Impact of Dietary Transition Metals on Host-Bacterial Interactions.
Cell Host Microbe. 2018 Jun 13;23(6):737-748. doi: 10.1016/j.chom.2018.05.008.
8
Multi-metal nutrient restriction and crosstalk in metallostasis systems in microbial pathogens.
Curr Opin Microbiol. 2020 Jun;55:17-25. doi: 10.1016/j.mib.2020.01.010. Epub 2020 Feb 12.
9
The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity.
Adv Microb Physiol. 2017;70:315-379. doi: 10.1016/bs.ampbs.2017.01.003. Epub 2017 Feb 13.
10
Manganese homeostasis modulates fungal virulence and stress tolerance in .
mSphere. 2024 Mar 26;9(3):e0080423. doi: 10.1128/msphere.00804-23. Epub 2024 Feb 21.

引用本文的文献

1
Copper-chelating natural products.
J Biol Inorg Chem. 2025 Mar;30(2):111-124. doi: 10.1007/s00775-025-02099-9. Epub 2025 Feb 17.
3
The antibacterial activity of the copper for and depends on its state: metalized, chelated and ionic.
Heliyon. 2024 Oct 10;10(20):e39098. doi: 10.1016/j.heliyon.2024.e39098. eCollection 2024 Oct 30.
4
Metal availability shapes early life microbial ecology and community succession.
mBio. 2024 Nov 13;15(11):e0153424. doi: 10.1128/mbio.01534-24. Epub 2024 Oct 23.
5
The operon protects magnesium-dependent enzymes by supporting manganese efflux.
J Bacteriol. 2024 Jun 20;206(6):e0005224. doi: 10.1128/jb.00052-24. Epub 2024 May 31.
6
Insights into copper sensing and tolerance in species.
Front Microbiol. 2024 May 15;15:1383737. doi: 10.3389/fmicb.2024.1383737. eCollection 2024.
7
The genes and are involved in zinc tolerance of .
Appl Environ Microbiol. 2024 Jun 18;90(6):e0045324. doi: 10.1128/aem.00453-24. Epub 2024 May 16.
8
The operon protects magnesium-dependent enzymes by supporting manganese efflux.
bioRxiv. 2024 Feb 15:2024.02.14.580342. doi: 10.1101/2024.02.14.580342.
9
Phylogenomic, structural, and cell biological analyses reveal that replicates in acidified Rab7A-positive vacuoles of .
Microbiol Spectr. 2024 Mar 5;12(3):e0298823. doi: 10.1128/spectrum.02988-23. Epub 2024 Feb 6.
10
Deciphering the human antibody response against during melioidosis using a comprehensive immunoproteome approach.
Front Immunol. 2023 Dec 11;14:1294113. doi: 10.3389/fimmu.2023.1294113. eCollection 2023.

本文引用的文献

2
Acinetobacter baumannii response to host-mediated zinc limitation requires the transcriptional regulator Zur.
J Bacteriol. 2014 Jul;196(14):2616-26. doi: 10.1128/JB.01650-14. Epub 2014 May 9.
3
Manganese acquisition and homeostasis at the host-pathogen interface.
Front Cell Infect Microbiol. 2013 Dec 5;3:91. doi: 10.3389/fcimb.2013.00091. eCollection 2013.
5
Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity.
PLoS Pathog. 2013 Oct;9(10):e1003733. doi: 10.1371/journal.ppat.1003733. Epub 2013 Oct 31.
6
Heme oxygenation and the widening paradigm of heme degradation.
Arch Biochem Biophys. 2014 Feb 15;544:87-95. doi: 10.1016/j.abb.2013.10.013. Epub 2013 Oct 23.
8
Role and regulation of heme iron acquisition in gram-negative pathogens.
Front Cell Infect Microbiol. 2013 Oct 8;3:55. doi: 10.3389/fcimb.2013.00055. eCollection 2013.
9
Probiotic bacteria reduce salmonella typhimurium intestinal colonization by competing for iron.
Cell Host Microbe. 2013 Jul 17;14(1):26-37. doi: 10.1016/j.chom.2013.06.007.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验