Suppr超能文献

操纵子通过支持锰外流来保护镁依赖性酶。

The operon protects magnesium-dependent enzymes by supporting manganese efflux.

作者信息

Sachla Ankita J, Soni Vijay, Piñeros Miguel, Luo Yuanchan, Im Janice J, Rhee Kyu Y, Helmann John D

机构信息

Cornell University, Department of Microbiology, Ithaca, NY, 14853-8101, USA.

Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.

出版信息

bioRxiv. 2024 Feb 15:2024.02.14.580342. doi: 10.1101/2024.02.14.580342.

Abstract

Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient double mutant both accumulate Mn and have similar metabolic perturbations they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the and the deletion mutants results from distinct enzymatic vulnerabilities.

摘要

微生物在其生命周期中会遇到无数种压力。金属离子稳态的失调日益被认为是宿主 - 微生物相互作用中的一个关键因素。细菌的金属离子稳态由专门的金属调节因子严格调控,这些调节因子控制着金属离子的摄取、螯合、运输和外排。在此,我们证明,(YS)复合体操纵子的缺失而非单个基因的缺失会导致对锰(Mn)超敏。YqgC是一种功能未知的整合膜蛋白,而SodA是一种依赖锰的超氧化物歧化酶(MnSOD)。YS菌株中两种锰外排蛋白MneP和MneS的表达降低,这与观察到的锰敏感性一致。YS菌株积累了高水平的锰,活性自由基(RRS)增加,并且具有广泛的代谢改变,这可以部分地由镁依赖性酶的抑制来解释。尽管YS操纵子缺失菌株和外排缺陷型双突变体都积累锰并且具有相似的代谢扰动,但它们也表现出表型差异。几种抑制外排突变体锰中毒的突变对YS突变体并无益处。此外,通过表达甲萘醌、铁载体和色氨酸(MST)家族的镁依赖性分支酸利用酶,可减轻YS突变体而非菌株中的锰中毒。因此,尽管它们的表型相似,但和缺失突变体中的锰敏感性是由不同的酶易损性导致的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e018/10888875/e7b07df75983/nihpp-2024.02.14.580342v1-f0001.jpg

相似文献

1
The operon protects magnesium-dependent enzymes by supporting manganese efflux.
bioRxiv. 2024 Feb 15:2024.02.14.580342. doi: 10.1101/2024.02.14.580342.
2
The operon protects magnesium-dependent enzymes by supporting manganese efflux.
J Bacteriol. 2024 Jun 20;206(6):e0005224. doi: 10.1128/jb.00052-24. Epub 2024 May 31.
3
TerC Family Proteins Help Prevent Manganese Intoxication.
J Bacteriol. 2020 Jan 2;202(2). doi: 10.1128/JB.00624-19.
5
Iron homeostasis in relies on three differentially expressed efflux systems.
Microbiology (Reading). 2023 Jan;169(1). doi: 10.1099/mic.0.001289.
6
Bacillus subtilis MntR coordinates the transcriptional regulation of manganese uptake and efflux systems.
Mol Microbiol. 2017 Jan;103(2):253-268. doi: 10.1111/mmi.13554. Epub 2016 Nov 2.
7
Transcriptome analysis reveals manganese tolerance mechanisms in a novel native bacterium of Bacillus altitudinis strain HM-12.
Sci Total Environ. 2022 Nov 10;846:157394. doi: 10.1016/j.scitotenv.2022.157394. Epub 2022 Jul 16.

本文引用的文献

1
TerC proteins function during protein secretion to metalate exoenzymes.
Nat Commun. 2023 Oct 4;14(1):6186. doi: 10.1038/s41467-023-41896-1.
2
An ancient metalloenzyme evolves through metal preference modulation.
Nat Ecol Evol. 2023 May;7(5):732-744. doi: 10.1038/s41559-023-02012-0. Epub 2023 Apr 10.
3
A model industrial workhorse: Bacillus subtilis strain 168 and its genome after a quarter of a century.
Microb Biotechnol. 2023 Jun;16(6):1203-1231. doi: 10.1111/1751-7915.14257. Epub 2023 Apr 1.
4
Protein metalation in a nutshell.
FEBS Lett. 2023 Jan;597(1):141-150. doi: 10.1002/1873-3468.14500. Epub 2022 Sep 26.
5
Copper microenvironments in the human body define patterns of copper adaptation in pathogenic bacteria.
PLoS Pathog. 2022 Jul 21;18(7):e1010617. doi: 10.1371/journal.ppat.1010617. eCollection 2022 Jul.
6
Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo.
Nat Metab. 2022 Jun;4(6):651-662. doi: 10.1038/s42255-022-00591-z. Epub 2022 Jun 27.
7
Nutritional immunity: the battle for nutrient metals at the host-pathogen interface.
Nat Rev Microbiol. 2022 Nov;20(11):657-670. doi: 10.1038/s41579-022-00745-6. Epub 2022 May 31.
9
Protein metalation in biology.
Curr Opin Chem Biol. 2022 Feb;66:102095. doi: 10.1016/j.cbpa.2021.102095. Epub 2021 Nov 8.
10
Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport.
Biochemistry. 2021 Nov 9;60(44):3277-3291. doi: 10.1021/acs.biochem.1c00586. Epub 2021 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验