Suppr超能文献

通过堆叠稀疏自动编码器深度神经网络从蛋白质序列预测主链Cα角度和二面角。

Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.

作者信息

Lyons James, Dehzangi Abdollah, Heffernan Rhys, Sharma Alok, Paliwal Kuldip, Sattar Abdul, Zhou Yaoqi, Yang Yuedong

机构信息

Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, Australia.

出版信息

J Comput Chem. 2014 Oct 30;35(28):2040-6. doi: 10.1002/jcc.23718. Epub 2014 Sep 12.

Abstract

Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org.

摘要

由于相邻两个Cα原子之间的距离几乎恒定,蛋白质的局部主链结构可以通过C(αi - 1)-C(αi)-C(αi + 1)之间的角度(θ)以及绕C(αi)-C(αi + 1)键旋转的二面角(τ)精确表示。θ角和τ角作为三到四个氨基酸残基结构特性的代表,提供了一种与φ角和ψ角(单个残基)以及二级结构(>3个残基)互补的主链构象描述。在此,我们报告了第一种基于序列预测θ角和τ角的机器学习技术。基于独立测试预测的角度,θ角的平均绝对误差为9°,τ角为34°,其在θ - τ平面上的分布与天然值的分布相近。由预测的θ角和τ角构建的10个残基片段结构与其相应天然结构的平均均方根距离仅为1.9Å。预测的θ角和τ角预计将与预测的ϕ角和ψ角以及二级结构互补,用于模型验证以及基于模板和无模板的结构预测。深度神经网络学习技术可作为一个在线服务器使用,名为“基于集成深度神经网络的结构特性预测”(SPIDER),网址为http://sparks-lab.org

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验