Suppr超能文献

从组学数据中利用基因组尺度模型综合系统生物学知识。

Synthesizing Systems Biology Knowledge from Omics Using Genome-Scale Models.

机构信息

Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, ON, K7L 3N6, Canada.

Institute for Systems Biology, 401 Terry Ave. N., Seattle, WA, 98109, USA.

出版信息

Proteomics. 2020 Sep;20(17-18):e1900282. doi: 10.1002/pmic.201900282. Epub 2020 Jul 12.

Abstract

Omic technologies have enabled the complete readout of the molecular state of a cell at different biological scales. In principle, the combination of multiple omic data types can provide an integrated view of the entire biological system. This integration requires appropriate models in a systems biology approach. Here, genome-scale models (GEMs) are focused upon as one computational systems biology approach for interpreting and integrating multi-omic data. GEMs convert the reactions (related to metabolism, transcription, and translation) that occur in an organism to a mathematical formulation that can be modeled using optimization principles. A variety of genome-scale modeling methods used to interpret multiple omic data types, including genomics, transcriptomics, proteomics, metabolomics, and meta-omics are reviewed. The ability to interpret omics in the context of biological systems has yielded important findings for human health, environmental biotechnology, bioenergy, and metabolic engineering. The authors find that concurrent with advancements in omic technologies, genome-scale modeling methods are also expanding to enable better interpretation of omic data. Therefore, continued synthesis of valuable knowledge, through the integration of omic data with GEMs, are expected.

摘要

Omic 技术使人们能够在不同的生物学尺度上全面读取细胞的分子状态。原则上,多种 omic 数据类型的组合可以提供整个生物系统的综合视图。这种集成需要系统生物学方法中的适当模型。在这里,基因组规模模型 (GEM) 作为一种计算系统生物学方法,用于解释和整合多组学数据。GEM 将生物体中发生的反应(与代谢、转录和翻译有关)转换为可以使用优化原理进行建模的数学公式。综述了用于解释多种 omic 数据类型的各种基因组规模建模方法,包括基因组学、转录组学、蛋白质组学、代谢组学和元组学。在生物系统背景下解释组学的能力为人类健康、环境生物技术、生物能源和代谢工程带来了重要发现。作者发现,随着 omic 技术的进步,基因组规模建模方法也在不断扩展,以实现对 omic 数据的更好解释。因此,预计通过将 omic 数据与 GEM 整合,继续综合有价值的知识。

相似文献

2
An overview of technologies for MS-based proteomics-centric multi-omics.基于 MS 的蛋白质组学中心型多组学技术概述。
Expert Rev Proteomics. 2022 Mar;19(3):165-181. doi: 10.1080/14789450.2022.2070476. Epub 2022 May 2.
6
Integrative omics - from data to biology.整合组学——从数据到生物学。
Expert Rev Proteomics. 2018 Jun;15(6):463-466. doi: 10.1080/14789450.2018.1476143. Epub 2018 May 18.
8
[Systems biology for industrial biotechnology].用于工业生物技术的系统生物学
Sheng Wu Gong Cheng Xue Bao. 2019 Oct 25;35(10):1955-1973. doi: 10.13345/j.cjb.190217.
9
Systems Biology of Metabolism.代谢的系统生物学。
Annu Rev Biochem. 2017 Jun 20;86:245-275. doi: 10.1146/annurev-biochem-061516-044757. Epub 2017 Mar 8.
10
Big data, integrative omics and network biology.大数据、综合组学和网络生物学。
Adv Protein Chem Struct Biol. 2021;127:127-160. doi: 10.1016/bs.apcsb.2021.03.006. Epub 2021 Apr 20.

引用本文的文献

2
Digital psychiatry: concepts, framework, and implications.数字精神病学:概念、框架及影响
Front Psychiatry. 2025 Jul 4;16:1572444. doi: 10.3389/fpsyt.2025.1572444. eCollection 2025.
3
Advancing precision oncology with AI-powered genomic analysis.通过人工智能驱动的基因组分析推动精准肿瘤学发展。
Front Pharmacol. 2025 Apr 30;16:1591696. doi: 10.3389/fphar.2025.1591696. eCollection 2025.
9
A High-Quality Genome-Scale Model for Metabolism.一个用于代谢的高质量基因组规模模型。
ACS Synth Biol. 2023 Jun 16;12(6):1632-1644. doi: 10.1021/acssynbio.2c00618. Epub 2023 May 15.

本文引用的文献

9
Advances and Challenges in Metatranscriptomic Analysis.宏转录组学分析的进展与挑战
Front Genet. 2019 Sep 25;10:904. doi: 10.3389/fgene.2019.00904. eCollection 2019.
10
Realizing the potential of full-length transcriptome sequencing.实现全长转录组测序的潜力。
Philos Trans R Soc Lond B Biol Sci. 2019 Nov 25;374(1786):20190097. doi: 10.1098/rstb.2019.0097. Epub 2019 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验