Schlüter Michael, Hentzel Thomas, Suarez Christian, Koch Mandy, Lorenz Wilhelm G, Böhm Leonard, Düring Rolf-Alexander, Koinig Karin A, Bunge Michael
Institute of Applied Microbiology, Research Centre for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-Universität Giessen, Germany.
Institute of Chemistry, Research Group Food and Environmental Chemistry, Martin-Luther-Universität Halle-Wittenberg, Germany.
Chemosphere. 2014 Dec;117:462-70. doi: 10.1016/j.chemosphere.2014.07.030. Epub 2014 Sep 19.
In a search for new aqueous-phase systems for catalyzing reactions of environmental and industrial importance, we prepared novel biogenerated palladium (Pd) nanocatalysts using a "green" approach based on microorganisms isolated from high-alpine sites naturally impacted by heavy metals. Bacteria and fungi were enriched and isolated from serpentinite-influenced ponds (Totalp region, Parsenn, near Davos, Graubünden, Switzerland). Effects on growth dynamics were monitored using an automated assay in 96-well microtiter plates, which allowed for simultaneous cultivation and on-line analysis of Pd(II)- and Ni(II)-mediated growth inhibition. Microorganisms from Totalp ponds tolerated up to 3mM Pd(II) and bacterial isolates were selected for cultivation and reductive synthesis of Pd(0) nanocatalysts at microbial interfaces. During reduction of Pd(II) with formate as the electron donor, Pd(0) nanoparticles were formed and deposited in the cell envelope. The Pd(0) catalysts produced in the presence of Pd(II)-tolerant Alpine Pseudomonas species were catalytically active in the reductive dehalogenation of model polychlorinated dioxin congeners. This is the first report which shows that Pd(0) synthesized in the presence of microorganisms catalyzes the reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs). Because the "bioPd(0)" catalyzed the dechlorination reactions preferably via non-lateral chlorinated intermediates, such a pathway could potentially detoxify PCDDs via a "safe route". It remains to be determined whether the microbial formation of catalytically active metal catalysts (e.g., Zn, Ni, Fe) occurs in situ and whether processes involving such catalysts can alter the fate and transport of persistent organic pollutants (POPs) in Alpine habitats.
为了寻找用于催化具有环境和工业重要性反应的新型水相体系,我们采用“绿色”方法制备了新型生物生成的钯(Pd)纳米催化剂,该方法基于从受重金属自然影响的高海拔地区分离出的微生物。从受蛇纹岩影响的池塘(瑞士格劳宾登州达沃斯附近的帕尔森Totalp地区)富集并分离出细菌和真菌。使用96孔微量滴定板中的自动测定法监测对生长动力学的影响,该方法允许同时培养并在线分析Pd(II)和Ni(II)介导的生长抑制。Totalp池塘中的微生物能够耐受高达3mM的Pd(II),并选择细菌分离物在微生物界面处培养并还原合成Pd(0)纳米催化剂。在用甲酸盐作为电子供体还原Pd(II)的过程中,形成了Pd(0)纳米颗粒并沉积在细胞膜中。在耐Pd(II)的高山假单胞菌物种存在下产生的Pd(0)催化剂对模型多氯二噁英同系物的还原脱卤具有催化活性。这是第一份表明在微生物存在下合成的Pd(0)催化多氯二苯并对二噁英(PCDDs)还原脱氯的报告。由于“生物Pd(0)”优选通过非侧链氯化中间体催化脱氯反应,这样的途径可能通过“安全路线”使PCDDs解毒。催化活性金属催化剂(例如Zn、Ni、Fe)的微生物形成是否在原位发生,以及涉及此类催化剂的过程是否会改变持久性有机污染物(POPs)在高山栖息地中的归宿和迁移,仍有待确定。