Suppr超能文献

用于在四维空间研究细胞生物学的水凝胶支架

Hydrogel scaffolds to study cell biology in four dimensions.

作者信息

Lewis Katherine J R, Anseth Kristi S

机构信息

University of Colorado at Boulder.

出版信息

MRS Bull. 2013 Mar 1;38(3):260-268. doi: 10.1557/mrs.2013.54.

Abstract

Poly(ethylene glycol) (PEG) hydrogels represent a versatile material scaffold for culturing cells in two or three dimensions with the advantages of limited protein fouling and cytocompatible polymerization to enable cell encapsulation. By using light-based chemistries for gelation and for incorporating biomolecules into the network, dynamic niches can be created that facilitate the study of how cells respond to user-dictated or cell-dictated changes in environmental signals. Specifically, we demonstrate integration of a photo-cleavable molecule into network cross-links and into pendant functional groups to construct gels with biophysical and biochemical properties that are spatiotemporally tunable with light. Complementary to this approach, an enzymatically cleavable peptide sequence can be introduced within hydrogel networks, in this case through photoinitiated addition reactions between thiol-containing biomacromolecules and ene-containing synthetic polymers, to enable cellular remodeling of their surrounding hydrogel microenvironment. With such tunable material platforms, researchers can employ a systematic approach for 3D cell culture experiments, spatially and temporally modulating physical properties (e.g., stiffness) as well as biological signals (e.g., adhesive ligands) to study cell behavior in response to environmental stimuli. Collectively, these material systems suggest routes for new experimentation to study and manipulate cellular functions in four dimensions.

摘要

聚乙二醇(PEG)水凝胶是一种多功能材料支架,用于二维或三维细胞培养,具有蛋白质污染有限和细胞相容性聚合的优点,能够实现细胞封装。通过使用基于光的化学方法进行凝胶化以及将生物分子掺入网络中,可以创建动态微环境,便于研究细胞如何响应用户指定或细胞指定的环境信号变化。具体而言,我们展示了将可光裂解分子整合到网络交联和侧链官能团中,以构建具有可通过光进行时空调节的生物物理和生化特性的凝胶。与此方法互补的是,可以在水凝胶网络中引入可酶裂解的肽序列,在这种情况下,通过含硫醇的生物大分子与含烯的合成聚合物之间的光引发加成反应,实现细胞对其周围水凝胶微环境的重塑。借助这种可调谐材料平台,研究人员可以采用系统方法进行三维细胞培养实验,在空间和时间上调节物理性质(例如硬度)以及生物信号(例如粘附配体),以研究细胞对环境刺激的反应行为。总体而言,这些材料系统为在四维空间中研究和操纵细胞功能的新实验提供了途径。

相似文献

1
Hydrogel scaffolds to study cell biology in four dimensions.
MRS Bull. 2013 Mar 1;38(3):260-268. doi: 10.1557/mrs.2013.54.
2
Photoresponsive Chemistries for User-Directed Hydrogel Network Modulation to Investigate Cell-Matrix Interactions.
Acc Chem Res. 2025 Jan 7;58(1):47-60. doi: 10.1021/acs.accounts.4c00548. Epub 2024 Dec 12.
3
Thiol-norbornene photo-click hydrogels for tissue engineering applications.
J Appl Polym Sci. 2015 Feb 20;132(8). doi: 10.1002/app.41563.
5
Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture.
Acta Biomater. 2014 Jan;10(1):104-14. doi: 10.1016/j.actbio.2013.08.044. Epub 2013 Sep 8.
6
PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids.
Biomaterials. 2011 Dec;32(36):9685-95. doi: 10.1016/j.biomaterials.2011.08.083. Epub 2011 Sep 14.
8
Synthesis and Photopatterning of Synthetic Thiol-Norbornene Hydrogels.
Gels. 2024 Feb 23;10(3):164. doi: 10.3390/gels10030164.
9
Encapsulation of murine hematopoietic stem and progenitor cells in a thiol-crosslinked maleimide-functionalized gelatin hydrogel.
Acta Biomater. 2021 Sep 1;131:138-148. doi: 10.1016/j.actbio.2021.06.028. Epub 2021 Jun 20.

引用本文的文献

1
3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function.
Respir Res. 2023 Oct 5;24(1):242. doi: 10.1186/s12931-023-02548-6.
2
Injectable conductive hydrogel can reduce pacing threshold and enhance efficacy of cardiac pacemaker.
Theranostics. 2021 Feb 6;11(8):3948-3960. doi: 10.7150/thno.54959. eCollection 2021.
3
Mechanomicrobiology: how bacteria sense and respond to forces.
Nat Rev Microbiol. 2020 Apr;18(4):227-240. doi: 10.1038/s41579-019-0314-2. Epub 2020 Jan 20.
6
Epithelial-mesenchymal crosstalk influences cellular behavior in a 3D alveolus-fibroblast model system.
Biomaterials. 2018 Feb;155:124-134. doi: 10.1016/j.biomaterials.2017.11.008. Epub 2017 Nov 15.
7
Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications.
Acta Biomater. 2016 Nov;45:110-120. doi: 10.1016/j.actbio.2016.09.006. Epub 2016 Sep 7.
8
Challenges and Opportunities to Harnessing the (Hematopoietic) Stem Cell Niche.
Curr Stem Cell Rep. 2016 Mar;2(1):85-94. doi: 10.1007/s40778-016-0031-y. Epub 2016 Jan 29.
10
Control of Retinal Ganglion Cell Positioning and Neurite Growth: Combining 3D Printing with Radial Electrospun Scaffolds.
Tissue Eng Part A. 2016 Feb;22(3-4):286-94. doi: 10.1089/ten.TEA.2015.0373. Epub 2016 Jan 27.

本文引用的文献

1
Soft biological materials and their impact on cell function.
Soft Matter. 2007 Feb 14;3(3):299-306. doi: 10.1039/b610522j.
2
A Versatile Synthetic Extracellular Matrix Mimic via Thiol-Norbornene Photopolymerization.
Adv Mater. 2009 Dec 28;21(48):5005-5010. doi: 10.1002/adma.200901808. Epub 2009 Oct 7.
3
Redirecting valvular myofibroblasts into dormant fibroblasts through light-mediated reduction in substrate modulus.
PLoS One. 2012;7(7):e39969. doi: 10.1371/journal.pone.0039969. Epub 2012 Jul 13.
5
The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels.
Biomaterials. 2011 May;32(14):3564-74. doi: 10.1016/j.biomaterials.2011.01.064. Epub 2011 Feb 21.
6
Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor.
J Endocrinol. 2011 May;209(2):139-51. doi: 10.1530/JOE-10-0377. Epub 2011 Feb 9.
7
Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate.
PLoS One. 2011 Jan 5;6(1):e15978. doi: 10.1371/journal.pone.0015978.
8
Peptide-Functionalized Click Hydrogels with Independently Tunable Mechanics and Chemical Functionality for 3D Cell Culture.
Chem Mater. 2010 Aug 24;22(16):4783-4790. doi: 10.1021/cm101391y. Epub 2010 Jul 22.
10
Thiol-ene click chemistry.
Angew Chem Int Ed Engl. 2010 Feb 22;49(9):1540-73. doi: 10.1002/anie.200903924.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验